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           Science and technology have had enor-
mous impact on many areas of human 
endeavor but surprisingly little effect 

on education. Many large-scale fi eld trials of 
science-based innovations in education have 
yielded scant evidence of improvement in 
student learning ( 1,  2), although a few have 
reliable positive outcomes ( 3,  4). Education 
involves many important issues, such as cul-
tural questions of values, but we focus on 
instructional decision-making in the context 
of determined instructional goals and suggest 
ways to manage instructional complexity.

Ambiguities and Contexts in Instruction
Many debates about instructional methods 
suffer from a tendency to apply compelling 
labels to vaguely described procedures, rather 
than operational defi nitions of instructional 
practices ( 5,  6). Even when practices are rea-
sonably well defi ned, there is not a consistent 
evidential base for deciding which approach 
is optimal for learning. Empirical investi-
gations of instructional methods, including 
controlled laboratory experiments in cogni-
tive and educational psychology, often fail 
to yield consensus. For instance, controversy 
exists regarding benefits of immediate ( 7) 
versus delayed feedback ( 8), or use of con-
crete ( 9) versus abstract materials ( 10).

Further complicating the picture is that 
results often vary across content or popula-
tions. For example, instruction that is effec-
tive for simple skills has been found to be 
ineffective for more complex skills ( 11), and 
techniques such as prompting students to pro-
vide explanations ( 12) may not be univer-
sally effective ( 13). Effectiveness of differ-
ent approaches is often contingent on student 
population or level of prior achievement or 
aptitude. Some approaches, for example, may 
be particularly effective for low-achieving stu-
dents ( 14,  15). Although specifi c instructional 
decisions may be useful at the level of the indi-
vidual student (e.g., will this student learn bet-
ter right now if I give her feedback or if I let 
her grapple with the material for a while?), the 

search for general methods that optimize the 
effectiveness, effi ciency, and level of student 
engagement is more challenging.

Complexity of Instructional Design
Of the many factors that affect learning in 
real-world contexts, we describe three of par-
ticular importance: instructional technique, 
dosage, and timing. How choices on one 
dimension can be independently combined 
with choices on other dimensions to pro-
duce a vast space of reasonable instructional 
choice options is shown in the fi gure ( Fig. 1). 

Instructional techniques. Many lists of 
learning principles suggest instructional 
techniques and point to supporting research 
( 12,  16). Each list has between 3 and 25 
principles. In-depth synthesis of nine such 
sources yielded an estimate of 30 indepen-
dent instructional techniques (see the table 
and table S1) ( Table 1).

 Dosage and implementation. Many 
instructional distinctions have multiple 
values or are continuous (e.g., the ratio of 
examples to questions or problems given in 
an assignment, the spacing of time between 
related activities). These dimensions are 
mostly compatible with each other—almost 
all can be combined with any other.

Intervention timing. The optimal tech-
nique may not be the same early in learning 
as it is later. Consider how novice students 
benefi t from studying many worked exam-

ples in place of many problems, whereas 
shifting to pure problem-solving practice 
becomes more effective as students develop 
expertise ( 17). Many researchers have sug-
gested that effective instruction should 
provide more structure or support early in 
learning or for more diffi cult or complex 
ideas and fade that assistance as the learner 
advances ( 18,  19).

If we consider just 15 of the 30 instruc-
tional techniques we identifi ed, three alter-
native dosage levels, and the possibility of 
different dosage choices for early and late 

instruction, we compute 315*2 or 205 trillion 
options. Some combinations may not be pos-
sible or may not make sense in a particular 
content area, yet other factors add further 
complexity: Many techniques have more than 
three possible dosage levels, there may be 
more than two time points where the instruc-
tional optimum changes, different knowledge 
needs in different domains often require a dif-
ferent optimal combination. For example, it 
may be optimal to adjust spacing of practice 
continually for each student on each knowl-
edge component ( 20). As another example, 
when the target knowledge is simple facts, 
requiring recall and use of knowledge pro-
duces more robust learning, but for complex 
problem-solving skills, studying a substantial 
number of worked example is better ( 1).

The vast size of this space reveals that 
simple two-sided debates about improving 
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learning—in the scientifi c literature, as well 
as in the public forum—obscure the com-
plexity that a productive science of instruc-
tion must address.

Taming Instructional Complexity
We make fi ve recommendations to advance 
instructional theory and to maximize its rel-
evance to educational practice.

1. Searching in the function space. Fol-
lowing the Knowledge-Learning-Instruc-
tion framework ( 21), we suggest three layers 
of functions of instruction: (i) to yield bet-
ter assessment outcomes that reflect broad 
and lasting improvements in learner perfor-
mance, (ii) instruction must change learners’ 
knowledge base or intellectual capacity and 
(iii) must require that learners’ minds execute 
appropriate learning processes.

We specify different functions to be 
achieved at each layer. The most distal, but 
observable, functions of instruction are 
assessment outcomes: long-term retention, 
transfer to new contexts, or desire for future 
learning. More proximal, but unobservable, 
functions are those that change different kinds 
of knowledge: facts, procedural skills, prin-
ciples, learning skills, or learning beliefs and 
dispositions. The most immediate and unob-
servable functions support learning processes 
or mechanisms: memory and fl uency build-
ing, induction and refi nement, or understand-
ing and sense-making ( 21,  22).

Functions at each layer suggest more 
focused questions that reduce the instruc-
tional design space ( 23): Which instructional 
choices best support memory to increase 
long-term retention of facts? Which are best 

for inducing general skills that produce trans-
fer of learning to new situations? Which are 
best for sense-making processes that produce 
learning skills and higher learner self-effi cacy 
toward better future learning? We can asso-
ciate different subsets of the instructional 
design dimensions with individual learning 
functions. For example, spacing enhances 
memory, worked examples enhance induc-
tion, and self-explanation enhances sense 
making (see the table). The success of this 
approach of separating causal functions of 
instruction depends on partial decomposabil-
ity ( 24) and some independence of effects of 
instructional variables: Designs optimal for 
one function (e.g., memory) should not be 
detrimental to another (e.g., induction). To 
illustrate, consider that facts require memory 
but not induction; thus, a designer can focus 
just on the subset of instructional techniques 
that facilitate memory.

Theoretical work can offer insight into 
when an instructional choice is dependent 
on a learning function. Computational mod-
els that learn like human students do demon-
strate, for instance, that interleaving problems 
of different kinds functions to improve learn-
ing of when to use a principle or procedure 
( 25), whereas blocking similar problems types 
(“one subgoal at a time”) improves learning of 
how to execute ( 26).

2. Experimental tests of instructional func-
tion decomposability. Optimal instructional 
choices may be function-specifi c, given varia-
tion across studies of instructional techniques 
where results are dependent on the nature 
of the knowledge goals. For example, if the 
instructional goal is long-term retention (an 
outcome function) of a fact (a knowledge 
function), then better memory processes (a 
learning function) are required; more test-
ing than study will optimize these functions. 
If the instructional goal is transfer (a differ-
ent outcome function) of a general skill (a dif-
ferent knowledge function), then better induc-
tion processes (a different learning function) 
are required; more worked example study will 
optimize these functions. The ideal experi-
ment to test this hypothesis is a two-factor 
study that varies the knowledge content (fact-
learning versus general skill) and instructional 
strategy (example study versus testing). More 
experiments are needed that differentiate how 
different instructional techniques enhance dif-
ferent learning functions.

3. Massive online multifactor studies. 
Massive online experiments involve thou-
sands of participants and vary many factors 
at once. Such studies ( 27,  28) can accelerate 
accumulation of data that can drive instruc-
tional theory development. The point is to test 

Spacing Space practice across time > mass practice all at once

Scaffolding Sequence instruction toward higher goals > no sequencing

Exam expectations Students expect to be tested > no testing expected

Testing Quiz for retrieval practice > study same material 

Segmenting Present lesson in learner-paced segments >  as a continuous unit

Feedback Provide feedback during learning > no feedback provided

Pretraining Practice key prior skills before lesson > jump in

Worked example Worked examples + problem-solving practice > practice alone

Concreteness fading Concrete to abstract representations > starting with abstract  

Guided attention Words include cues about organization > no organization cues

Linking Integrate instructional components > no integration

Goldilocks Instruct at intermediate difficulty level > too hard or too easy

Activate preconceptions Cue student's prior knowledge > no prior knowledge cues

Feedback timing Immediate feedback on errors > delayed feedback

Interleaving Intermix practice on different skills > block practice all at once

Application Practice applying new knowledge > no application

Variability Practice with varied instances > similar instances

Comparison Compare multiple instances > only one instance

Multimedia Graphics + verbal descriptions > verbal descriptions alone 

Modality principle Verbal descriptions presented in audio > in written form 

Redundancy Verbal descriptions in audio > both audio & written

Spatial contiguity Present description next to image element described > separated

Temporal contiguity Present audio & image element at the same time > separated 

Coherence Extraneous words, pictures, sounds excluded > included 

Anchored learning Real-world problems > abstract problems

Metacognition Metacognition supported > no support for metacognition

Explanation Prompt for self-explanation > give explanation > no prompt

Questioning Time for reflection & questioning >  instruction alone

Cognitive dissonance Present incorrect or alternate perspectives >  only correct 

Interest Instruction relevant to student interests >  not relevant
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Table 1Instructional design principles. These address three different functions of instruction: memory, 
induction, and sense-making (see table S1).
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hypotheses that identify, in context of a par-
ticular instructional function, what instruc-
tional dimensions can or cannot be treated 
independently.

Past studies have emphasized near-term 
effects of variations in user interface features 
( 27,  28). Designing massive online studies that 
vary multiple instructional techniques is fea-
sible, but convenient access to long-term out-
come variables is an unsolved problem. Proxi-
mal variables measuring student engagement 
and local performance are easy to collect (e.g., 
how long a game or online course is used; pro-
portion correct within it). But measures of stu-
dents’ local performance and their judgments 
of learning are sometimes unrelated, or even 
negatively correlated, with desired long-term 
learning outcomes ( 29).

4. Learning data infrastructure. Mas-
sive instructional experiments are essentially 
going on all the time in schools and colleges. 
Because collecting data on such activities is 
expensive, variations in instructional tech-
niques are rarely tracked and associated with 
student outcomes. Yet, technology is increas-
ingly providing low-cost instruments to eval-
uate the learning experience for data collec-
tion. Investment is needed in infrastructure to 
facilitate large-scale data collection, access, 
and use, particularly in urban and low-income 
school districts. Two current efforts include 
LearnLab’s huge educational technology data 
repository ( 30) and the Gates Foundation’s 
Shared Learning Infrastructure ( 31).

5. School-researcher partnerships. On-
going collaborative problem-solving part-
nerships are needed to facilitate interaction 
between researchers, practitioners, and school 
administrators. When school cooperation is 
well-managed and most or all of an experi-
ment is computer-based, large well-controlled 
“in vivo” experiments can be run in courses 
with substantially less effort than an analo-
gous lab study.

A lab-derived principle may not scale to 
real courses because nonmanipulated vari-
ables may change from the lab to a real course, 
which may change learning results. In in vivo 
experiments, these background conditions are 
not arbitrarily chosen by the researchers but 
instead are determined by the existing con-
text. Thus, they enable detection of general-
ization limits more quickly before moving to 
long, expensive randomized fi eld trials.

School-researcher partnerships are useful 
not only for facilitating experimentation in 
real learning contexts but also for designing 
and implementing new studies that address 
practitioner needs ( 32,  33).

In addition to school administrators and 
practitioners, partnerships must include crit-

ical research perspectives, including domain 
specialists (e.g., biologists and physicists); 
learning scientists (e.g., psychologists and 
human-computer interface experts); and edu-
cation researchers (e.g., physics and math 
educators). It is important to forge com-
promises between the control desired by 
researchers and the fl exibility demanded by 
real-world classrooms. Practitioners and edu-
cation researchers may involve more domain 
specialists and psychologists in design-based 
research, in which iterative changes are made 
to instruction in a closely observed, natural 
learning environment in order to examine 
effects of multiple factors within the class-
room ( 34).

Our recommendations would require reex-
amination of assumptions about the types 
of research that are useful. We see promise 
in sustained science-practice infrastructure 
funding programs, creation of new learning 
science programs at universities, and emer-
gence of new fi elds ( 35,  36). These and other 
efforts are needed to bring the full potential of 
science and technology to bear on optimizing 
educational outcomes. 
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