Interaction plateau

From LearnLab
Revision as of 12:47, 11 December 2007 by Vanlehn (Talk | contribs)

Jump to: navigation, search

Brief statement of principle

Step-based instruction is just as effective as natural tutoring, and more effective than low-interaction instruction.

Description of principle

We see a plateau when learning gains are graphed on the y-axis and degree of interactivity is graphed on the x-axis. The learning gains increase as the degree of interaction increases from low-interaction instruction to [[step-based instruction], but then the curve is flat from step-based instruction to natural tutoring.

Operational definition

The steps of a task are defined by convention or the instruction. Step-based instruction is insures that students attended to correct steps and that they are encourage to derive them. For instance, a tutoring system might provide a form to fill in, where each blank in the form is a step, and then provide immediate feedback and hints on each blank in order to insure that the student derives a correct step for the blank.

On the other hand, natural tutoring is more interactive. The prototype is face-to-face human tutoring, although some natural langauge computer tutoring systems count as natural tutors as well. The key attribute is that they can interact at any grain size with the student. For instance, if a human tutor is helping a student fill in the blanks in the aforementioned form, and the student appears confused by one blank, then the human tutor might elicit a directed line of reasoning (Evens & Michael, 2006) where each inference in a long series is elicited from the student and leads eventually to filling in the blank correctly. The interaction plateau makes the counter-intuitive claim that such natural tutoring is no more effective than step-based instruction.

The interacition plateau also claims that low interaction instruction is less effective than step-based instruction. Low interaction instrcution consists of


Experimental support

Laboratory experiment support

In vivo experiment support

Theoretical rationale

(These entries should link to one or more learning processes.)

Conditions of application

Caveats, limitations, open issues, or dissenting views

Variations (descendants)

Generalizations (ascendants)