Self-explanation: Meta-cognitive vs. justification prompts

From LearnLab
Revision as of 10:52, 1 February 2008 by Bobhaus (Talk | contribs) (The Effects of Interaction on Robust Learning)

Jump to: navigation, search

The Effects of Interaction on Robust Learning

Robert G.M. Hausmann, Brett van de Sande, Sophia Gershman, & Kurt VanLehn

Summary Table

PIs Robert G.M. Hausmann (Pitt), Brett van de Sande (Pitt), Sophia Gershman (WHRHS), & Kurt VanLehn (Pitt)
Other Contributers Tim Nokes (Pitt)
Study Start Date Sept. 1, 2007
Study End Date Aug. 31, 2008
LearnLab Site Watchung Hills Regional High School (WHRHS)
LearnLab Course Physics
Number of Students N = 75
Total Participant Hours 150 hrs.
DataShop Loaded: data not collect


Abstract

The literature on studying examples and text in general shows that students learn more when they are prompted to self-explain the text as they read it. Experimenters have generally used two types of prompts: meta-cognitive and justification. An example of a meta-cognitive prompt would be, "What did this sentence tell you that you didn't already know?" and an example of a justification prompt would be, "What reasoning or principles justifies this sentence's claim?" To date, no study has included both types of prompts, and yet there are good theoretical reasons to expect them to have differential impacts on student learning. This study will directly compare them in a single experiment using high schools physics students.

Background and Significance

Glossary

See Hausmann_Study2 Glossary

Research question

How is robust learning affected by self-explanation vs. jointly constructed explanations?

Independent variables

Only one independent variable, with two levels, was used:

  • Explanation-construction: individually constructed explanations vs. jointly constructed explanations

Prompting for an explanation was intended to increase the probability that the individual or dyad will traverse a useful learning-event path.

Hypothesis

Dependent variables

  • Near transfer, immediate: electrodynamics problems solved in Andes during the laboratory period (2 hrs.).

Results

Laboratory Experiment


Procedure


Explanation

Further Information

Annotated bibliography

References

Connections

Future plans