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Collaboratively observing tutoring is a promising method for observational learning (also referred to as
vicarious learning). This method was tested in the Pittsburgh Science of Learning Center’s Physics
LearnLab, where students were introduced to physics topics by observing videos while problem solving
in Andes, a physics tutoring system. Students were randomly assigned to three groups: (a) pairs
collaboratively observing videos of an expert human tutoring session, (b) pairs observing videos of expert
problem solving, or (c) individuals observing expert problem solving. Immediate learning measures did
not display group differences; however, long-term retention and transfer measures showed consistent
differences favoring collaboratively observing tutoring.
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Observing tutoring has recently emerged as a promising new
focus in the observational learning literature (Chi, Roy, & Haus-
mann, 2008; Craig, Driscoll, & Gholson, 2004). By observing
tutoring, we refer to the process in which a learner sees and hears
the dialogue between a tutor and a tutee without being able to
participate in it. In observational learning (also labeled vicarious or
social learning), information is gained by watching the learning
process of another (Bandura, 1986; Gholson & Craig, 2006). Thus,
observing tutoring can be considered a subcategory of observa-
tional learning.

In the present study and previous research by Chi et al. (2008),
pairs of students solved problems collaboratively as they observed
tutoring. This combination of collaborative problem solving and
observing tutoring is called collaboratively observing tutoring. If
collaboratively observing tutoring proves to be an effective
method of learning, then it could provide a cost-effective alterna-

tive to human tutoring and intelligent tutoring systems (Alessi &
Trollip, 1991; Anderson, Corbett, Koedinger, & Pelletier, 1995;
Azevedo, & Bernard, 1995; Derry & Potts, 1998; VanLehn et al.,
2005).

However, it is important to understand whether the benefits are
due to the domain content of the videos (essentially, a worked
example) or the tutorial content, which has affective overtones and
is conversationally based. The current study compares collabora-
tively observing videos of one-on-one, expert human tutoring with
observing videos of an expert demonstrating how to solve the same
problems. That is, the videos show either a tutoring session or
worked examples.

Observational Learning

Learning by observing has been investigated in several areas of
research. For instance, in social psychology, studies have shown
that people who watch someone acting aggressively tend to start
acting more aggressively themselves (Bandura, 1969, 1986). Neu-
roscientists and developmental psychologists study imitative learn-
ing in humans and other species (e.g., Meltzoff, 2005). Learning
by observing occurs in work settings (Latham & Saari, 1979) and
is the first stage of Collins, Brown, and Newman’s (1989) model–
scaffold–fade account of cognitive apprenticeship. In much of this
work, students learned by observing live humans, observing videos
of humans, studying cartoons, and/or listening to audiotapes (Ban-
dura, 1986; Gholson & Craig, 2006; Rogoff, Paradise, Mejı́a
Arauz, Correa-Chávez, & Angelillo, 2003; Rosenthal & Zimmer-
man, 1978).

However, when the competence to be acquired is problem
solving and the observed material is a problem plus all the steps
required for its solution, then the material is called a worked
example. Typically, the problem and its steps are presented on
paper, in a video, or via click-through text. Considerable research
has investigated how students learn from worked examples (At-
kinson, Derry, Renkl, & Wortham, 2000). Although it might be
interesting to compare modalities (video vs. paper, etc.), there is no
doubt that students can learn from observation in all of them. Our
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concern is with the content presented to students, so we used video
as the only presentation modality.

Whereas a common way of modeling a new skill is for the
instructor to demonstrate it, another method is for the instructor to
tutor a student with other students watching. For instance, a master
tailor may show a senior apprentice how to sew an intricate joint
while the other apprentices watch (Lave & Wenger, 1991), or a
student may solve a math problem on the blackboard at the front
of the class with the teacher’s help. The demonstration is a mono-
logue, whereas the tutoring session is a dialogue between the tutor
and tutee.

Both types of presentation of material seem to have benefits. On
the one hand, the demonstration (worked example) is probably
coherent and certainly correct, whereas the tutorial dialogue may
be incoherent and/or incorrect at times. From a purely cognitive
point of view, the information as presented in the demonstration
should be easier to learn than the information as presented in the
tutoring session. On the other hand, the tutoring session might be
more interesting. For instance, text has been found to have higher
ratings of situational interest if it contains humans with whom the
reader can identify (Hidi & Harackiewicz, 2000). The tutoring
session may display self-regulatory behavior that the observers
would be wise to emulate. The observers may adopt more realistic
expectations for their own performance when they see another
student struggle. Further, the dialogue of the tutoring session
provides discourse scaffolds, such as questions and explanations,
shown to be effective for learning in both classroom settings
(Silliman & Wilkinson, 1994) and in vicarious learning (Craig,
Brittingham, Williams, Cheney, & Gholson, 2009). In brief, the
worked examples may be cognitively easier to learn from, but the
tutoring sessions may provide more guidance and motivational
benefits.

Although the choice between modeling with a worked example
versus a tutoring session is clearly an important one that instruc-
tional designers and teachers must confront frequently, little re-
search has been done on this issue. Early work on the dialogue
versus monologue manipulation suggests that the choice can in-
fluence the learner’s performance (Cox, McKendree, Tobin, Lee,
& Mayes, 1999; Craig, Gholson, Ventura, Graesser, & the Tutor-
ing Research Group, 2000; Driscoll et al., 2003; Fox Tree, 1999;
Shebilske, Jordan, Goettl, & Paulus, 1998), which, in turn, sug-
gests that the choice may influence learning. For example, Fox
Tree (1999) found that performance was better while overhearing
dialogues than while overhearing monologues. Fox Tree prepared
materials for the experiment by dividing college students into
pairs, called directors and matchers (Schober & Clark, 1989). The
goal was for the director to describe an ordered set of abstract
shapes (tangrams) to the matcher, so that the matcher could place
the shapes in the same order as the director’s pictures. Directors
either gave instructions for the matcher to follow (monologue
condition) or conversed freely with the matcher (dialogue condi-
tion). The sessions were recorded, and only those sessions in
which matchers correctly ordered the tangrams were used as
materials in the experiment. The results were that the participants
who overheard dialogues outperformed those who overheard
monologues on assembly tasks. The dependent measures reflected
performance only (e.g., number of tangrams placed correctly) and
not learning gains.

Observing tutoring has been compared with tutoring itself. Al-
though these studies do not directly address our research question,
they do indicate some factors that constrain the design of our
experiment. In several experiments, Craig and colleagues (Craig
et al., 2004; Craig, Sullins, Witherspoon, & Gholson, 2006) con-
trasted pretest to posttest gains of learners on 12 computer literacy
topics. The learners either interacted directly with an intelligent
tutoring system, AutoTutor (Graesser et al., 2004; Graesser, Jeon,
& Dufty, 2008; Graesser, Person, Harter, & the Tutoring Research
Group, 2001) or observed recordings of those tutoring sessions.
Whereas learners in both conditions showed significant learning
gains from pretest to posttest, participants in the computer tutoring
condition significantly outperformed those in the observing tutor-
ing condition in two experiments, with effect sizes of d � .50 in
Study 1 and d � .84 in Study 2 (Craig et al., 2004). In two other
experiments, there were nonsignificant trends in the same direction
(Craig et al., 2006). This suggests that although computer tutoring
can be more effective than observation, more testing is required to
fully understand the factors impacting this finding.

Studies of learning from printed examples have shown that
some students self-explain the examples and learn a great deal,
whereas others read the examples in a passive way and learn
considerably less (Chi, Bassok, Lewis, Reiman, & Glaser, 1989).
This suggests that some observers in the Craig et al. studies may
have watched the videos in a passive way that would reduce their
learning.

In order to increase the number of observers using more active
learning strategies, the Craig et al. (2004, Experiment 2) study was
designed so that students would observe the videos in pairs. In this
study, 110 participants were divided into three groups. The first
two groups implemented the same computer tutoring condition
(n � 28) and observing tutoring condition (n � 28) as in the other
experiments. The third group consisted of pairs (n � 27 pairs) who
observed the videos together. That is, 2 participants sat together in
front of a computer monitor and watched a video of a tutoring
session. They were encouraged to pause the video and talk to each
other about information they did not understand in the video. Their
conversation was audio recorded. All training conditions averaged
about 35 min. The new condition produced gains that were inter-
mediate between those of the tutoring condition and those of the
individual observers of tutoring condition. However, the gains of
the pairs in the observing tutoring condition were not significantly
different from those of the two old conditions (individuals observ-
ing tutoring and tutoring).

Chi et al. (2008) compared human tutoring with observation of
human tutoring along with several other control conditions. Their
experiment was different from the Craig et al. (2004) experiments
in several ways. First, Chi et al. used an expert tutor working
face-to-face with a tutee. Second, in order to encourage equal
amounts of activity, students in all conditions solved problems.
The tutees solved problems with an expert tutor as a source of help.
Other students solved problems with either videos of tutoring
sessions or a textbook as their source of help. Third, the experi-
ment contained five conditions: tutoring plus a 2 � 2 manipulation
of collaboration (individual vs. pair) and source of help (textbook
vs. video of tutoring sessions). Chi et al. coined the term collabo-
ratively observing tutoring to refer to the condition in which pairs
of students solved problems while observing a tutoring session.

780 CRAIG, CHI, AND VANLEHN



The term reflects the combination of collaborative peer problem
solving with observation of tutoring.

First, 10 expert tutoring sessions were conducted and video
recorded. Then the other four conditions were run. Participants
solved problems on paper, either individually or with a partner.
While they solved problems, participants had access to either the
textbook that they had studied during pretraining or to a video of
the tutor and tutee solving the same problems as one they were
trying to solve. Although the pairs studied together, they were
assessed individually at pretest and posttest.

Chi et al. (2008) hypothesized that the combination of problem
solving and collaborative problem solving would drastically re-
duce the frequency of passive observation of the videos and thus
make collaboratively observing tutoring just as effective as face-
to-face human tutoring. The predicted null effect was found.
Although the number of students per condition was small (n � 10
for tutoring; n � 20 for collaboratively observing tutoring), there
were statistically reliable advantages of the two conditions over the
other three conditions that had similar cell sizes (n � 20 for pairs
collaborating with a textbook; n � 10 for individuals observing
tutoring; n � 10 for individuals with a textbook). These results
suggest accepting the null result at face value. That is, one of the
best forms of instruction known, face-to-face expert human tutor-
ing, is no better than pairs of students solving problems while
observing a video of the same problems being solved by a tutee
and tutor. This intriguing result calls for further investigation and
inspired the study reported here.

Taking the Craig et al. (2004) and Chi et al. (2008) studies
together, one can infer a constraint on subsequent experimentation.
Simply having pairs watch a video apparently does not reduce
passivity nearly as much as having pairs solve a problem while
they watch the tutor and the tutee solve the problem. This was
confirmed in a follow-up analysis of audio recordings of the Craig
et al. Experiment 2, in which pairs had an average of three
conversational turns per session, with an average session lasting 35
min, whereas the collaborative observers in the Chi et al. study
produced, on average, 121 conversational turns per 35-min inter-
val. The increased level of collaboration was most likely due to the
task demands of the study. Although the Craig et al. study did not
require learners to perform any task other than watching the video,
learners in the Chi et al. study performed a problem-solving task
while observing tutoring.

Chi et al. (2008) also found that the tutoring videos were
differentially effective. The observers learned more from some
videos than from others. Chi et al. divided tutees into high and low
pretest score groups. The pretest occurred after the pretraining and
thus was partially a measure of the students’ ability to learn
physics. The 10 collaborative observers who viewed high-ability
tutees videos learned significantly more than the 10 collaborative
observers who viewed the low-ability tutee videos. This result
suggests a recommendation for future experiments, specifically,
the use of videos of high-ability tutees, as they somehow enhance
the learning of the observers.

These studies (Chi et al., 2008; Craig et al., 2004) provide
important guidelines about how to maximize active observing
(Chi et al., 2008; Gholson & Craig, 2006) during tutoring.
Active observing is described as observing that facilitates en-
gagement with the materials so as to encourage deeper process-
ing. First, observers should solve problems as they observe the

video. Second, they should do so in pairs rather than working
alone. And third, videos of high-ability tutees (i.e., students
who have some knowledge of the material) should be used as
the materials.

However, it should also be pointed out that the third most
effective condition in the Chi et al. study (2008) was that of pairs
collaboratively solving problems, with only a textbook as a source
of help. Indeed on some measures, this group’s gains were statis-
tically equivalent to those of the top two groups (the tutees and the
collaborative observers of tutoring). These gains occurred despite
the fact that the textbook did not have worked examples based on
the problems that the students were solving. Thus, if a pair got
stuck, the pair might not have been able to find enough information
in the textbook to resolve their impasse. On the other hand, if a pair
in the collaboratively observing tutoring condition got stuck, they
could always search the video to find out what the tutor sanctioned
and resolve their impasse. Although the textbook and the tutoring
videos were content equivalent in an abstract sense, the textbook
lacked critical details that students might find useful when trying
to solve problems and learn.

This suggested repeating the Chi et al. (2008) comparisons
while controlling for the details of the content. Our experiment did
so by using two kinds of videos. Both showed the same problems
being solved with the same steps. However, some videos showed
tutees working with a tutor to solve the problems, and the other
videos showed an expert solving the problems and explaining the
steps as he went. This ensured that the domain content was nearly
identical. The difference in content was affective, metacognitive,
and interactional. The expert-produced worked example was affect
neutral, included no discussion or demonstrations of learning
strategies, and, of course, contained no interaction with another
person. The tutoring sessions included variations in affect,
typically from the tutee; some demonstration of good and poor
learning strategies (e.g., guessing, asking in-depth questions of
the tutor) by the tutee; and considerable interaction between the
tutor and tutee. In fact, there are probably many other differ-
ences between the two types of videos than the ones listed here.
However, considerable future research is needed to identify
these and to determine whether they are responsible for the
learning differences we observed.

If the content in tutoring videos does increase students’ active
observing (e.g., interest, motivation, etc.), then pairs observing
tutoring will learn more than pairs observing worked examples. By
contrast, if detailed domain content is the key determinant of
learning, then these two conditions should be equivalent in their
effects on learning. If this null effect is observed, however, we
would not know if it was due to equivalent learning or a flaw in the
experimental method (e.g., low power). Thus, we needed to in-
clude a third condition to ensure that the method was working
properly. For the third condition, we chose to have individuals
solve problems while observing worked examples of the same
problems being solved by an expert. Many studies have demon-
strated high learning gains when individuals study worked exam-
ples and solve problems in various combinations (Atkinson et al.,
2000; Renkl, 2005). Because Chi et al. (2008) found that learning
of pairs observing tutoring matched that of actual tutoring, and as
it is widely believed that tutoring is more effective than individual
study of examples and problem solving (VanLehn, 2009), we
expected that our target group, that is, pairs observing tutoring,
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would gain more than a control group consisting of individuals
observing worked examples.

The Current Study

The LearnLabs (www.learnlab.org) of the Pittsburgh Science of
Learning Center (PSLC) acted as facilitators for the investigation,
bringing researchers together with schools and teachers to scien-
tifically test learning theories in classrooms. The current study was
conducted in the PSLC’s Physics LearnLab. This LearnLab con-
sists of introductory physics courses at the United States Naval
Academy. These courses use the Andes system (VanLehn et al.,
2005) provided by the PSLC as the homework portion of their
course.

The Andes system provides introductory college-level physics
homework problems. The Andes program is not a complete in-
structional system but rather a coach that helps the student solve
homework problems. It plays the same role in the course as a
workbook, except that it provides immediate feedback and hints
while students are solving problems. It encourages certain
problem-solving practices (e.g., drawing vectors instead of imag-
ining them) to increase conceptual understanding of physics. The
problem solving involves algebra, trigonometry, and vectors, but
not calculus. In this way, it is intended to be used with almost any
course’s textbook, lectures, and labs. The system tracks the stu-
dent’s progress and provides him or her with a score based on the
student’s problem solving for each problem. As previous research
on vicarious learning has shown the Andes system to be able to
promote both procedural learning (Fox Tree, 1999) and deeper
conceptual learning (Chi et al., 2008; Craig et al., 2006), it pro-
vides an ideal bridge for moving into the classroom. Andes is
freely available on the Internet.1

In the study reported here, we evaluated collaboratively observ-
ing tutoring in the classroom. In doing so, we compared collabo-
rative observers of tutoring videos during problem solving in
Andes (collaboratively observing tutoring condition) against two
control conditions. The first control condition required pairs of
students to collaboratively observe a worked example video during
problem solving in Andes (collaboratively observing examples
condition). In the second control condition, individually observing
examples, individual students viewed worked example videos
alone while problem solving in Andes. Because the Andes system
provides video explanations for the learners on select problems,
this control was analogous to the help that was normally provided
to the student in the course. Neither Chi et al. (2008) nor Craig
et al. (2004, 2006) found learning gains for individuals who
observed tutoring when compared with various controls. There-
fore, the condition in which individuals observed tutoring was not
taken into the classroom so as to avoid exposing students to an
ineffectual learning condition.

Two contrasting hypotheses were tested in this design. The
active observing hypothesis predicted that the learners in the
collaboratively observing tutoring condition would outperform
those in other conditions because of the highly dynamic tutoring
session. Thus, the tutoring videos contained dialogue features (e.g.,
turn taking, pauses, and affect) and expert tutoring elements (e.g.,
corrections and scaffolding) designed to promote more active
engagement with the video material. In contrast, the passive in-
formation display from the worked examples did not include such

features. This hypothesis generated prediction of the following
pattern of learning gains:

Collaboratively observing tutoring

� collaboratively observing worked examples

� individually observing worked examples. (1)

An alternative hypothesis, the content equivalency hypothesis, is
based on the premise that the content is what really matters. If
learners receive equivalent content, the method in which the ma-
terial is presented should not influence learning (Klahr & Nigam,
2004). As all participants in our study were exposed to the same
content, this hypothesis predicted the following pattern of learning
gains:

Collaboratively observing tutoring

� collaboratively observing worked examples

� individually observing worked examples. (2)

Method

Participants

United States Naval Academy (USNA) students (ages 18–19
years; N � 67) from three sections of the PSLC Physics LearnLab
participated in this study. Participation in the study was a manda-
tory learning experience integrated into the laboratory section of
the class, but students’ data were used in the study only with their
consent. Just one student did not give consent. This resulted in an
n of 10 for the individually observing examples condition, an n of
26 for the collaboratively observing examples condition, and an n
of 30 for the collaboratively observing tutoring condition. Four
participants did not complete any homework problems and were
excluded from the long-term assessments. This left an n of 9 in
the individually observing examples condition, an n of 25 in the
collaboratively observing examples condition, and an n of 28 in
the collaboratively observing tutoring condition.

Because of the nature of classroom research, the number of
participants tends to be a fixed small number, which can lead to
statistical power problems. In the original Chi et al. (2008) data,
the observed effect size of collaboratively observing tutoring was
large (d � .97) when compared with individually observing tutor-
ing controls. A power analysis (Cohen, 1988) with the large effect
size indicated the need for a total of 60 participants to reach a
standard � � .80 level for power with � � .05. On the basis of this
power analysis conducted with the G�Power system (Faul, 2008),
the limited sample size was deemed to be sufficient.

Materials

Andes tutoring system. The Andes tutoring system (VanLehn
et al., 2005) provides introductory college level physics homework
problems (see Figure 1). The system was selected for use in this
study because it was integrated into the Physics LearnLab sections
of the USNA’s introductory physics courses as the homework for

1 See http://www.andestutor.org/ for further details on the Andes system.
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the course. In addition to homework, the system was implemented
as both the context of the learning videos and the problem-solving
domain for training. However, because the study investigated the
effect of observing videos, the help and feedback functions were
disabled during the in-class training. The fully functioning version
of Andes was available to students while they solved the course
homework and on immediate post-training assessments.

Learning materials. Two sets of videos were observed by the
learners. The videos were informationally equivalent in that they
covered the same problem-solving steps in the same order and
gave the same conceptual information. The TechSmith Camtasia®
studio software package (TechSmith, 2006) was used to capture
and edit all videos.

One set of videos consisted of an expert working out solutions
for two Andes problems on rotational kinematics. There were two
videos, one for each problem. In these videos, the expert, a retired
USNA professor of physics with a PhD in the subject, solved two
Andes problems while verbally presenting the relevant conceptual
knowledge for each step. The videos presented the actions per-
formed on the screen along with the expert’s voice. In these
videos, the expert covered the same steps in the same order as were
covered in the tutoring session described below. Both sets of
videos were approximately 22 min long.

The second set of videos consisted of recordings of an expert
tutoring session on rotational kinematics. For these videos, the
same physics expert tutored an intermediate-level tutee who had
completed an introductory physics course that included rotational
kinematics but did not have a degree or advanced training in
physics. Again there were two videos, one for each problem. The
videos were recorded by the same method as the worked example
and displayed screen activity with voices of both the tutor and the
tutee. The tutoring videos for the experiment were selected from a
pool of five tutoring sessions on the basis of voice quality, the
tutee’s pretest being above 50% correct, the posttest score being
above 90% correct, and complete topic coverage.

Immediate learning measures. Two isomorphic multiple-
choice tests were used as pretest and immediate posttests. Both
tests consisted of 12 four-choice questions assessing conceptual
knowledge of rotational kinematics. The tests were counterbal-
anced across participants to prevent order effects.

In addition, three Andes problems were used as immediate
posttest competency measures. The problems were designed as
near-transfer problems using the same knowledge as in the training
problems (see Appendix). The help and feedback features of the
Andes system were available while participants completed the
near-transfer problems. The Andes scoring rubric (VanLehn et al.,

Figure 1. Screen shot of the Andes Physics Tutoring System with one of the two training problems on rotational
kinematics.
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2005) subtracted points for errors and overuse of help. Students
were familiar with the scoring rubric as it was used for their
homework.

Long-term retention and transfer. The long-term measures
consisted of the students’ Andes homework scores. They were
instructed to complete these homework problems at any point
between when they were assigned and the section test. Assignment
of the homework problems occurred after the training session was
completed.

The homework problems were divided into three categories.
There was one long-term retention problem, three long-term near-
transfer problems, and three long-term far-transfer problems. The
long-term retention problem was one of the two problems taught
during training. The homework problems listed by category can be
found in the Appendix.

Equipment. During the training phase, participants shared a
laptop computer with two Belkin headphone splitters that allowed
for two headsets and microphones to be used on the same machine
by the 2 participants. Participants’ on-screen problem-solving ac-
tivity and verbal interactions during training were captured using
the TechSmith Camtasia recorder (TechSmith, 2006).

Design and Procedure

The current in vivo study implemented a pretest–posttest design
with a long-term classroom impact measure to determine differ-
ences among the three experimental groups: collaboratively ob-
serving tutoring condition, collaboratively observing examples
condition, and individually observing examples condition. The
USNA students were randomly assigned to one of three conditions
by lab tables. Thus, whereas they were allowed to work with their
normal lab partner, they were blind to the condition of their lab
table until after they selected their table. Following assignment of
conditions, participants provided informed consent; any questions
about the procedure were answered by the experimenter. Because
this was a classroom setting with the instructor present, partici-
pants were given the option of contacting the experimenter outside
of class if they wished to be excluded from the study.

After the informed consent process, all participants watched a
brief 4-min video. This video introduced them to the terms and
basic concepts of rotation to ensure that they had the prerequisite
knowledge for completion of their problem-solving task. After-
ward, all participants individually completed the multiple-choice
pretest.

The learners then performed the training task, which consisted
of completing two Andes problems with the aid of video solutions
for each problem. They solved rotational kinematics problems
using the Andes tutoring system while simultaneously watching
either the tutoring session or the worked example videos showing
the same problems being solved. Their voice and onscreen
problem-solving activity were recorded.

All participants worked at their own pace on this task. However,
there was no significant difference in the amount of time groups
worked on the training problems, F(2, 60) � 0.53, p � .59 (for
individually observing worked examples, M � 32 min; for col-
laboratively observing worked examples, M � 28 min; and for
collaboratively observing tutoring, M � 29 min).

The students were assessed individually immediately after train-
ing with a multiple-choice posttest and three immediate near-

transfer problems performed in Andes on rotational kinematics.
Once the participants indicated they were done with the training
session, each participant was given a multiple-choice posttest,
which he or she completed individually. After the participant
finished the multiple-choice test, the experimenter administered
the Andes problems, which each participant also completed indi-
vidually. Participants were given as much time as they needed to
complete these tasks. All participants finished before the end of the
class period.

Andes homework data. Long-term measures consisted of
Andes homework problems that students completed in an unsu-
pervised setting (their dorm rooms, typically). On average, the
students completed their homework 26 days after the training
session; there were no significant differences for time delays
among groups. The 26-day delay might seem excessive, but it was
in line with participants’ completion of other physics homework
problems. This delay was due to a standard class deadline set by
the instructor. Completion of homework for the current section
being covered was not requested until the end of the section. This
resulted in most homework being completed on a fairly delayed
basis.

Although the instructor encouraged students to help each other,
students were required to solve their own Andes problems. The
instructor was adept at using log data to detect cases where one
student copied another’s homework, so this rarely happened. Log
data were harvested from the PSLC DataShop, which routinely
collects Andes log data as the students do their homework.

Students could access the hints available in the Andes program
and were permitted to consult their textbook, their friends, and
even the instructor as they completed their homework. The long-
term measures served as a type of dynamic assessment (Bransford
& Schwartz, 1999; Haywood & Tzuriel, 2002), measuring the
students’ ability to transfer their learning to authentic instructional
situations rather than operating within the sequestered setting of
standard tests.

Andes homework was scored by an automatic metric that gave
participants credit for correct steps while solving the problem and
deducting points for errors and help requests. A total of 100
possible points per problem could be earned. The participant’s
average Andes score was calculated for each category and reported
with the average total possible score of 100. If a participant did not
complete any homework problems, he or she was excluded from
this data set.

Results and Discussion

Immediate Learning Measures

Multiple-choice data. A series of analyses of variance
(ANOVAs) was performed on the learners’ multiple-choice data
from the immediate pretests and posttests. The ANOVA performed
on pretest data did not reveal significant differences among groups.
Whereas the multiple-choice test showed that all students gained
significantly from pretest to posttest, F(1, 65) � 14.99, p � .001,
�2 � .231, there were no significant differences among conditions
on learning gains with the multiple-choice data, F(1, 63) � 0.13,
p � .877, �2 � .003. That is, the collaborative observers of
tutoring, the collaborative observers of worked examples, and the
individual observers of worked examples all seem to have learned
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the same amount according to the multiple-choice data. Means and
standard deviations for pretest and posttest data for all conditions
are given in Table 1.

Immediate near-transfer data. An ANOVA was performed on
the average Andes score across the three Andes near-transfer
problems that were given immediately after the training (see Table
1 for Andes score means and standard deviations). As with the
multiple-choice data, there were no significant differences among
conditions, F(1, 63) � 0.25, p � .782, �2 � .001. This lack of
significance among conditions in the immediate learning data is
consistent with the content equivalence hypothesis.

Long-Term Learning Measures

Long-term retention data. An ANOVA was performed on the
participants’ long-term retention data to determine differences
among groups. This analysis revealed a significant difference
between conditions, F(2, 59) � 3.44, p � .05, �2 � .104. We
performed a priori orthogonal contrasts to test our predictions.
These tests revealed that students in the collaboratively observing
worked examples condition did not significantly differ from stu-
dents in our individually observing worked examples condition on
their long-term retention tests, t(59) � 0.67, p � .503. Students in
the collaboratively observing tutoring condition were then com-
pared with the combined participants of the individually observing
worked examples condition and the collaboratively observing
worked examples condition. This contrast was significant and in
favor of participants in the collaboratively observing tutoring
condition, t(59) � 2.61, p � .05, d � .68. See Table 2 for means,
standard deviations, and standard errors for long-term retention
data.

Additionally, the mean time to solve the retention problem was
548.39 s (approximately 9 min). This is significantly longer than
the 293.29 s (approximately 5 min) per Andes physics problem
during the immediate posttest, F(1, 62) � 21.85, p � .001, h2 �
0.358. This significant time difference provides some confirmation
for our interpretation that students took the long-term retention
problem and other homework problems much more seriously than
the immediate posttest problems in that participants spent more
time attempting to solve each problem. However, this is only an
assumption of ours given the data provided. It does not rule out
possibilities that observing tutoring led students to perform other
beneficial behaviors, such as seeking help from instructors or
discussing problems with other students. Future work should in-

clude follow-up surveys or interviews to determine the specific
mechanisms that produced this effect.

Long-term near-transfer data. We conducted an ANOVA on
the participants’ near-transfer data to determine differences among
groups. This analysis revealed a significant effect of condition,
F(2, 59) � 4.39, p � .05, �2 � .129. We again performed a priori
contrasts to test our predictions. These tests revealed that once
again, in the near-transfer data, participants in the collaboratively
observing worked examples condition were not significantly dif-
ferent from those in the individually observing worked examples
condition, t(59) � 0.21, p � .834. The students’ data from the
collaboratively observing tutoring condition were then compared
with the students’ data of the combined individually observing
worked examples and collaboratively observing worked examples
conditions. This contrast was significant in favor of participants in
the collaboratively observing tutoring condition, t(59) � 2.85, p �
.01, d � .74. See Table 2 for means, standard deviations, and
standard errors for the learners’ near-transfer data.

Long-term far-transfer data. We conducted an ANOVA on
the participants’ far-transfer data to determine differences among
groups. This analysis revealed a significant effect of condition,
F(2, 59) � 4.89, p � .05, �2 � .142. We conducted a priori
contrasts to test our predictions. These tests revealed that partici-
pants in the collaboratively observing worked examples condition
were not significantly different from our individually observing
worked examples condition, t(59) � 0.05, p � .963. We then
compared the students’ data from the collaboratively observing
tutoring condition with the data from the combined individually
observing worked examples and the collaboratively observing
worked examples conditions. This contrast was significant in favor
of participants in the collaboratively observing tutoring condition,
t(59) � 2.96, p � .05, d � .77. See Table 2 for means, standard
deviations, and standard errors for far-transfer data.

As can be seen in Table 2, we observed a different pattern of
data between our immediate learning measures and long-term
learning measures. No group differences were observed in our
immediate learning measures. In our long-term learning measures,
collaboratively observing tutoring outperformed both individually
and collaboratively observing examples. Although the results of
our long-term data argue strongly in favor of our active observing
hypothesis, the null effect on immediate assessment is consistent
with the content equivalency hypothesis. The observed reversal in
effects could be due to two possible factors. First, the students

Table 1
Means and Standard Deviations for Immediate Learning Measures for the Three Conditions

Condition

Multiple-choice
pretest

Multiple-choice
posttest Gain scores

Immediate near
transfer

M SD M SD M SD M SD

Individually observing worked examples .58 .23 .69 .18 .11 .20 64 22
Collaboratively observing worked examples .56 .22 .65 .20 .09 .20 61 29
Collaboratively observing tutoring .58 .18 .66 .17 .08 .16 57 30

Note. Values shown are proportion correct on multiple-choice pretest problems, proportion correct on multiple-choice posttest problems, proportion gain
scores (scores on multiple-choice posttest minus scores on multiple-choice pretest), and immediate near-transfer score (Andes problem-solving score; out
of a possible 100).
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might have taken the long-term assessment more seriously than the
immediate tests. This could be attributable to the homework being
part of the students’ course grade. Thus, we assume that because
the students likely took this series of Andes problems more seri-
ously, we were able to detect an effect for our manipulations.

Alternatively, the immediate assessments may tap only shal-
low knowledge, which is provided equally well by all three
conditions. For instance, all three types of instruction might
have allowed students to remember the problem-solving steps
immediately afterwards and then to use them for a copy-and-
edit style of problem solving (VanLehn, 1998) but not to gain
the deeper understanding that is needed for long-term perfor-
mance and transfer.

Analysis of Students’ Behavior During the Process of
Collaboratively Observing

In order to test the claims of the active learning hypothesis, we
analyzed the students’ problem-solving behavior during training to
determine some potential causes of the differences between the
two collaboratively observing conditions. The videos were ana-
lyzed at both a macro level and a micro level.

At the macro level, the pairs’ interactions were coded on the
basis of their task engagement levels. In these codings, two raters
viewed 30-s excerpts from each pair’s recorded session. These
excerpts were taken at 10% intervals from each collaborative
observer session (e.g. at 3 min, at 6 min, and so forth for a 30-min
video). This resulted in a total of 10 selections per video, for a total
of 450 codings conducted. Active engagement was coded when the
collaborative pair was discussing the problem-solving task (plan-
ning), engaging in discussion to determine a discrepancy in a
member’s knowledge, engaging in explanation of a problem-

solving step, or collaboratively engaged in the problem-solving
task. A kappa score of .76 was obtained between the two coders.
This kappa level was deemed a sufficient level of agreement
(Cohen, 1960), and disagreements were worked out between
raters. A t test conducted on the data from the engagement
coding revealed that the pairs who collaboratively observed
tutoring were more actively engaged in their problem-solving
task than the pairs who collaboratively observed an example,
t(44) � 2.13, p � .05, d � 0.63. See Table 3 for the mean
proportion of time that collaborative learners in each group
were actively engaged.

This pattern was replicated to a lesser extent in a microlevel
analysis of each pair’s problem-solving steps. Each step of the
problem was coded on the basis of the way in which it was
obtained by the collaborative pair. Steps could be copied directly
from the video example or generated by the collaborative pair.
Further, we examined whether the observing pairs were using the
videos to help scaffold learning by coding whether the video was
searched when attempting to solve a step. While the observed
copying, t(43) � 0.45, ns, and generating, t(43) � 0.51, ns,
behaviors were not significantly different across conditions, pairs
observing tutoring did actively search the video more often
when attempting to solve a step, t(43) � 2.09, p � .05. Pairs of
learners observing tutoring were more likely to search the video
to verify a step in the solution and not just to copy it. Thus,
these learners were more likely to find discrepancies between
their internal mental model and that presented in the video. This
discrepancy detection is a key component of active learning
(Chi, de Leew, Chiu, & LaVancher, 1994; Wittrock, 1989). See
Table 3 for the means and standard deviations of the codings by
condition.

Table 2
Means, Standard Deviations, and Standard Errors for Long-Term (Robust) Learning Measures From Andes Homework Scores Across
the Three Conditions

Condition

Long-term retention Long-term near transfer Long-term far transfer

M SD SE M SD SE M SD SE

Individually observing worked examples 73 17 6 68 33 11 53 42 14
Collaboratively observing worked examples 78 22 4 70 30 6 54 31 6
Collaboratively observing tutoring 88 13 2 88 13 2 77 22 4

Note. Andes homework scores are out of a possible 100 points.

Table 3
Means and Standard Deviations for Active Engagement Levels (Proportion) and Active Search as Well as Means and Standard
Deviations for the Proportion of Problem-Solving Steps That Collaborative Observers Either Copied or Generated

Condition

Active
engagement Active search Copied steps Generated steps

M SD M SD M SD M SD

Collaboratively observing worked examples .48 .19 .00 .00 .30 .32 .68 .30
Collaboratively observing tutoring .60 .19 .09 .20 .27 .23 .72 .23

Note. Values for active engagement and active search, respectively, are based on proportion of time during collaboration and active searching of video
during problem solving.
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General Discussion

The overall pattern of data partially supports our active observ-
ing hypothesis. Although immediate assessments of competence
showed no differences across conditions, students in the collabo-
ratively observing tutoring condition outperformed the students in
the other conditions for all three of our long-term learning mea-
sures. Further, as claimed by the active learning hypothesis, learn-
ers in the collaboratively observing tutoring group displayed more
active learning processes, with both more active engagement and
active searching of the material during training.

These results suggest that when students collaboratively observe
tutoring, they tend to have more active collaboration, which is
followed by increases on long-term learning measures. This find-
ing provides more evidence that active learning can improve
learning from observing (Chi et al., 2008; Gholson & Craig, 2006)
and is consistent with the literature on self-explanation (Chi et al.,
1989) and multimedia learning (Mayer, 2001; Wittrock, 1989) that
indicates the importance of active learning for deeper conceptual
learning or transfer of learning to occur. More important, this
finding shows that collaboratively observing tutoring while prob-
lem solving is a useful tool for improving learning outcomes in
classroom settings when compared with traditional worked exam-
ples.

The current research was conducted in physics problem solving.
Future research is required to test the generalizability of this
finding to other domains, to younger populations, and to classroom
instruction. However, past research has shown that vicarious learn-
ing techniques with a scripted question-led dialogue between a
virtual tutor and tutee is effective for teaching 8th- to 11th-grade
students (Craig et al., 2008; Gholson et al., in press). Vicarious
learning has also been shown to be effective in the domains of
conceptual physics (Gholson et al., in press), the circulatory sys-
tem (Craig et al., 2008), and computer literacy (Craig et al., 2006;
Gholson et al., in press). It is feasible that collaboratively observ-
ing tutoring would be a viable learning method in these areas as
well.

Given the consistent findings of our long-term data and analyses
of training transcripts, the null results on our immediate measures
may be a result of some students rushing through the assessments
perhaps because these assessments, unlike the long-term ones, did
not affect the course grades. However, this explanation is not the
only one possible. For instance, collaboratively observing tutoring
might lead to later changes in student study behavior. That is,
watching the tutee on the video struggle but ultimately learn might
encourage students to study harder themselves.

However, the difference of our immediate low stakes versus our
long-term high stakes assessments in classrooms settings could be
a warning to researchers in the Learning Sciences as they move
laboratory research into the classroom. Students in the laboratory
are volunteers that usually receive compensation for their partici-
pation in the form of money or course credit. This compensation is
often proportional to the time they work. This may create a
demand to take all of the tasks seriously. On the other hand,
students who perform tasks as part of their normal instruction,
even if they have consented to have their data used by experiment-
ers, may apply their normal prioritization schemes. In our case,
students might have felt that after they received the instruction
offered that day (e.g., observing the videos while solving prob-

lems), they could finish learning rotational kinematics at home and
thus might have viewed the posttesting as merely an untimely
nuisance. However, follow-up experiments are needed to verify
this claim.

Because observing tutoring involves pairs of students watching
a tutoring video together while collaboratively solving problems, it
is most easily deployed as a classroom activity provided that each
pair has a computer or a video player that the students can control.
However, collaborative viewing could also be useful as a home-
work activity if a pair of students can meet after school or can
collaborate remotely. The success of tutoring observation also
suggests the utility of taking another look at standard instructional
practice, wherein the teacher tutors a student in front of the class.

The current study suggests that observing tutoring is an effective
alternative to standard instructional methods such as studying
worked examples. Other laboratory research suggests that tutoring
observation is as effective as interacting with both a human tutor
(Chi et al., 2008) and an intelligent tutoring system (Craig et al.,
2006). This study is the first to test observing tutoring in vivo, that
is, as part of normal class instruction. Although the classroom
context appears to have affected our assessments immediately after
training, the instruction itself seems to have survived the transition
from laboratory to a real classroom while retaining its effective-
ness. If these results continue to replicate in the classroom, then we
would have an effective alternative to labor-intensive human tu-
toring and costly intelligent tutoring systems.
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Appendix

Andes Tutoring System Training and Assessment Items

Andes Training Problems (Andes Label: KR1A, KR3B)

1. A wheel is rotating counterclockwise as a constant angular
velocity of � rad/s. through what angle does the wheel rotate in
60.0 s?

2. An electric grinding wheel is initially rotating counterclockwise
as 10.9 rad/s when it is turned off. Assume a constant negative
angular acceleration of 0.500 rad/s^2. How long does it take the
wheel to stop? Through how many radians does the wheel turn
before it comes to a complete stop?

Andes Immediate Near-Transfer Problems (Andes Labels:
KR1C, KR3C, KR4B)

1. A wheel rotates counterclockwise at a constant angular velocity
of 2.5 rad/s. How long does it take the wheel to rotate through an
angle of 210 rad?

2. The magnitude of the initial angular velocity of a wheel rotating
counterclockwise is 30 rad/s. If the wheel takes 15 s to slow to a
complete stop, what was the average angular acceleration of the
wheel?

3. A wheel is initially at rest. If the wheel undergoes an average
angular acceleration of 1.5 rad/s^2 over time, how fast would it be
rotating 10 seconds later?

angular velocity:
After this time, the wheel continues to rotate at constant angular
velocity.
What is the angular displacement of the wheel during a subsequent
20 second time interval?

angular displacement:

Andes Long-Term Retention Problem (Andes Label:
KR1A)A1

1. A wheel is rotating counterclockwise at a constant angular
velocity of � rad/s. through what angle does the wheel rotate in
60.0 s?

Andes Long-Term Near-Transfer Problems
(Andes Labels: KR1B, KR2B, KR3A)

1. A wheel is rotating clockwise at a constant angular velocity of
3�� rad/s. What is the magnitude of the angular displacement of
the wheel after 45.0 seconds?

2. The initial angular velocity of a wheel is � rad/s in a clockwise
direction. If the wheel is speeding up with a constant angular
acceleration of �/4 rad/s^2, what is the magnitude of the angular
velocity of the wheel after 15.0 seconds?

3. The magnitude of the initial angular velocity of a wheel rotating
counterclockwise is � rad/s. If the wheel is slowing down with an
average angular acceleration of �/6 rad/s^2, how long does it take
to stop?

Andes Long-Term Far-Transfer Problems (Andes Labels:
KR4A, KR6A, and KR7A)

1. A wheel has an initial angular velocity of 3�� rad/s in a
counterclockwise direction. If the wheel is slowing down with a
constant angular acceleration of �/4 rad/s^2, through what angle
does it turn before it reaches a final angular velocity of � rad/s in
a clockwise direction?

2. Two fixed pulleys are attached by a fan belt. The radius of the
first pulley is 0.030 m. The magnitude of its angular velocity is
2�� rad/s in a counterclockwise direction. If the radius of the
second pulley is 0.020 m, what is the magnitude of its angular
velocity if the fan belt does not slip?
Note: Consider rim1 and rim2 to be points on the rims of the
pulleys in contact with the belt at the instant depicted. Use a
relative position vector to represent the perpendicular distance of a
rim point from the axis of rotation.

3. A wheel is rotating at a constant angular velocity of � rad/s in
a clockwise direction. The radius of the wheel is 0.030 m. What is
the magnitude of the linear velocity of a point halfway between the
center of the axle and the outside edge of the wheel?
Note: use a relative position vector to represent the perpendicular
distance of a rotating point from the axle.

Note. An asterisk within the Andes problems represents the multipli-
cative function.

A1 Whereas Problem KR3B (along with Problem KR1A) was initially
intended to be used as a long-tern retention problem, researchers had no
control over the course content, and this problem was not assigned as
homework by the instructor.
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