
Automating Cognitive Model Improvement

by A*Search and Logistic Regression

Hao Cen, Kenneth Koedinger, Brian Junker
Carnegie Mellon University

5000 Forbes, Pittsburgh, PA, U.S.A.

Abstract
A good cognitive model is important to the
effectiveness to an intelligent tutor. In this paper
we present a method of combining the A* search
algorithm and logistic regression to automate the
improvement of a cognitive model by 1)
automatically generating different models by
mutating learning factors in a base model 2)
integrating logistical regression to evaluate
different models 3)selecting the best model
through a depth-first search algorithm.

1. Introduction

A cognitive model is a set of production rules or
skills encoded in intelligent tutors to model how
students solve problems. Production rules and skill
are used interchangeably in this paper. Production
rules embody the knowledge that students are
trying to acquire, and allows the tutor to estimate
each student’s learning of each skill as the student
works through the exercises (Corbett, Anderson,
O’Brien 1992). The model is usually generated by
brainstorming and iterative refinement between
subject experts, cognitive scientists and
programmers. However, these first pass models
are best guesses and our experience is that such
models can be improved.. In this paper, we present
a data-driven approach to evaluate the initial
model and to automatically improve it by mining
log data of student-tutor interaction. We first
introduce related work on cognitive model
evaluation, then describe the cognitive model we
have analyzed, the methodology we explored, and
lessons learned on how best to apply data mining
approaches to the problem of cognitive model
improvement.

2. Literature Review

One measure of the performance of a cognitive
model is how the data fits the model. Newell and
Rosenbloom (1993) found the inverse relationship
between the error rate of performance and the
number of practice -- the error rate decreases as
the amount of practice increases. The relationship
can be depicted as a power function

 Y = a Xb
 Y – the error rate

 X – the opportunity to practice a skill
 a – the error rate on the first trial
 b – the learning rate

Figure 1 shows a steadily declining learning curve
with the x-axis as the opportunity to practice a
skill and the y-axis as the error rate.

Figure 1 Power Law Learning Curve

Corbett, Anderson, and O’Brien (1992) observed
that the power relationship might not be readily
apparent in some complex skills, which have blips
in their learning curves, as is shown in figure 2.
They also found the power relationship holds if
the complex skill can be decomposed into some
subskills, each of which has a smoother learning
curve in figure 3.

In other words, the original model was reasonable
for many production rules, but the one shown in
Figure 2 (Declare-Parameter) was too general. By
breaking the Declare-Parameter production into
two more specific productions, Declare-First-
Parameter and Declare-Second-Parameter, allows
the cognitive model to make a needed distinction
(and thus provide better hint messages and do
more accurate student modeling).

Koedinger (2000) suggested am empirical method
for improving cognitive models that involves
experimental comparisons of student error rates on
systematic variation of a core problem when just
one problem feature or “difficulty factor” (e.g.,
first vs. second parameter or concrete vs. abstract
presentation). He calls this approach “Difficulty
Factor Assessment”. From theory and task
analysis, researchers can hypothesize the likely
factors that cause student difficulties. By assessing
the performance difference on pairs of problems
that vary by one factor, we can identify the hidden

knowledge component that can be used to improve
a cognitive model.

Figure 2 Before Split

Figure 3 After Split

Inspecting learning curves, like those in Figures 2
and 3, provides an alternative way to identify
factors that characterize problem difficulty and,
further, characterize how much practice on one
problem in the tutor transfers to the next. By
considering changes in student performance over
time (the “Opportunity” variable on the x-axis in
Figures 2 and 3), a method we call “Learning
Factors Analysis” goes a step further. Rather than
simply visually inspecting learning curves for
“blips” like those shown in Figure 2, we can
automatically test whether including (or
excluding) factors, like first vs. second parameter,
leads to better fitting learning curves. Better fits
mean a cognitive model that better characterizes
what is hard for a student what factors do or do
not change how well one practice opportunity
transfers to another (e.g., the 5th to 6th
opportunity in Figure 2). Croteau, Heffernan, and
Koedinger (2004) used Learning Factor Analysis
to evaluate alternative models of algebra
symbolization.

3. Methodology

3.1 Base Model

 The base cognitive model used in our study is
the model for the Area unit of Cognitive Tutor
Geometry. It has 12 discrete skills -- circle-area,
circle-circumference, circle-diameter, compose-
by-addition, compose-by-multiplication, equi-tri-
height, parallelogram-area, pentagon-area,
rectangle-area, square-area, trapezoid-area, and

triangle-area. It was generated from the third
author’s analysis of geometry textbooks and an
attempt to simply the original cognitive model he
designed for this unit.

3.2 Data acquisition and pre-processing

 The data set was extracted from log files for
students who used the tutor in their Pittsburgh
classroom. The data has four columns – student,
success, step, skill. Student is the names of the
students. Step is the particular step in a tutor
problem the students are involved in. Success is
whether the student did that step correctly or not.
Skill is the particular skill used in that step. The
whole data set has 5431 data points involving 59
students, and 139 problem steps.

3.3 Difficulty Factors

A factor is a hidden feature in a problem, which
either makes the problem easier to solve or
difficult to solve. It is usually found by theory and
task analysis. Suppose the student is asked to find
the areas of the following two circles (figure 4),
given their radius. The production rule used in this
problem is CIRCLE-AREA, i.e. given the radius r,
compute the area S = π r2. Although the two
problem requires the same production rule, some
students may find it easier to solve the first one
than the second one. The only difference between
them is that the second circle is embedded in a
square while the first circle is presented alone.

 Figure 4 a hypothetic problem

Thus, we can hypothesize that it is the
embededness of the circle that causes the
difficulty. We code it as a factor called “Embed”
with two possible values “embed” or “alone”. For
notation purpose, the first letter of the factor name
is capitalized and all the values are lower cased.
When the student encounters a problem with the
embedded circle, we record the presence of the
factor “Embed” with value “embed”. When the
student encounters a problem with a single circle,
we record the presence of the factor “Embed” with
value “alone”.

Other factors we found in the geometry lesson are
“Repeat”, “Backward”, “BaseOrHeight”,
“FigureType”, “FigurePart”. Their values are
listed in table 1.

“Repeat” means whether the production rule to be
used is in its first trial. In the given example, if it
is the first time for the student to use the
production rule CIRCLE-AREA, the factor has
value “initial”. Otherwise, it has value “repeat”.

“Backward” means whether the production rule to
be used is in its backward form, rather than the
forward form taught. Imagine the student is taught
how to compute the area of a circle using
production rule CIRCLE-AREA S = π r2. While
in the new problem, he is asked to compute the
radius, given the area. The production rule to be
used is in the backward form. Thus, the factor has
value “backward” in this step.

“FigureType” refers to the major geometric type in
the problem. It has nine values, eight of which
refer to specific geometric type in the step, and
one with value zero denoting none previous figure
applicable. In the previous circle problem, the
FigureType has value “circle”.

“FigurePart” refers the part of the figure to be
computed. It has twelve values, eleven of which
refer to specific part of the figure type in the step,
and one with value zero denoting none previous
part applicable. The previous problem asks the
student to compute the circle area, and thus the
FigureType has value “area”.

3.4 skill orders and model operators

Skill orders refer to the amount of times a
particular skill is used for the same student. It
increments every time the skill is used by the same
student. Table 2 shows that student A used skill
“Rectangle-area” in the first step and in the second
step. Thus, the skill order for this skill in the
second trial is 2. . Notice that the skill orders are
calculated per person. Although the last skill order
for “Rectangle-area” for student A is 2, the skill
order for the first time use of “rectangle-area” by
student B is 1 since B is a different student.

A model operator is a mutation on a base model
and generates several submodels by incorporating
a factor. We implemented three model operators –
partial split, add, and merge.

When a base model A is partial split on a skill by
an n-valued factor, that skill is possibly split into n
new skills with the element of the factor. For
example, table 1 shows that for student A skill
“rectangle-area” is used in step 1 and 2 and factor
“embed” is has value “alone” in step 1 and
“embed” in step 2. Shown in table 2, after partial
splitting skill “rectangle-area” on factor “Embed”,
we get two new skills “rectangle-area-embed” and
“rectangle-area-alone”. The skill order is
recomputed every time an operator is performed
on a model. Note worthily, the student has the first
time to use rectangle-area-Embed in step 2 in the

new model while it was her second time to use
rectangle-area in step 2.

Operator “Add” means that the factor with its
possible value is simply added as a new skill to the
original model. If we add “Embed” to model A,
we will have one more skill called “Embed” while
the rest skills remain unchanged. Table 4 shows
the result after adding “Embed”.

Operator “Merge” replaces all the skills with the
factor value when the factor value is present. If we
merge the base model according to factor
“Embed”, we will end up with the following skills
and skill orders (table 5).

We name the submodel with the names of the all
operations it has taken. E.g [add Embed], [merge
FigurePart, add BaseOrHeight].

4. Model Search

Given the base model, student performance data,
defined factors, and the three operators, we can
search a model space to find a model that better
accounts for student performance data. We
implemented an A* search algorithm, an informed
graph search algorithm guided by a heuristic, to
search through the gigantic model space. The base
model is partial split, added, and merged on all the
factors and generates a list of submodels. Each of
the submodels is then split, added, and merged.
We also added model checking function in the
search algorithm to recognize equivalent models
to avoid duplicates. Figure 5 shows part of the
search space.

To limit the tree size and avoid out of memory
problem, after each expansion, we only store the
best 10 – 20 submodels according to the heuristic.
The trade-off is the optimality vs. memory. By
pruning low quality submodels along the search
process, we can search a deeper level before the
program consumes all memory.

4.1 Multiple Logistic Regression

Multiple regression is a method to study the
relationship between a response variable Y and a
group of predictor variables. Logistic regression is
a type of multiple regression where the dependent

Table 3 Learning Factors
Factor Names Factor Values
Embed alone embed
Repeat initial repeat
Backward forward backward
BaseOrHeight 0 Base Height
FigureType 0 triangle square rectangle trapezoid
 parallelogram pentagon circle segment

FigurePart 0 area
area-
difference circumference diameter

 radius area-combination base height apothem
 side segment

Table 2 Skills in the Base Model

Student Step Skill Skill Order Factor - Embed
A step1 Rectangle-area 1 alone
A step2 Rectangle-area 2 embed
A step3 Square-area 1 alone
B step1 Rectangle-area 1 alone
B step2 Compose-by-addition 1 embed
B step3 Compose-by-addition 2 embed

Table 3 Skills in the New Model by Splitting the Base Model on Factor “Embed”

Student Step Skill Skill Order
A step1 Rectangle-area-alone 1
A step2 Rectangle-area-embed 1
A step3 Square-area 1
B step1 Rectangle-area 1
B step2 Compose-by-addition 1
B step3 Compose-by-addition 2

Table 4 Skills in the New Model by Adding Factor “Embed”

Student Step Skill Skill Order
A step1 Rectangle-area 1
A step1 Embed - alone 1
A step2 Rectangle-area 2
A step2 Embed - embed 1
A step3 Square-area 1
A step3 Embed - alone 2
B step1 Rectangle-area 1
B step1 Embed - alone 1
B step2 Compose-by-addition 1
B step2 Embed - embed 1
B step3 Compose-by-addition 2
B step3 Embed - embed 2

Table 5 Skills in the New Model by Mergine Factor “Embed”

Student Step Skill Skill Order
A step1 Embed - alone 1
A step2 Embed - embed 1
A step3 Embed - alone 2
B step1 Embed - alone 1
B step2 Embed - embed 1
B step3 Embed - embed 2

Figure 5 Search Through a Model Space

Table 6 Better models generated by different heuristics

variable has a Bernoulli distribution with the
probability of p, and the response variables have
either a discrete distribution or continuous
distribution. For a k-dimensional predictor
variable X, the logit model solves

 ln[p/(1-p)] = β0 + Σβjxij

where xij is the the i-th observation value of a
independent variable.

In our method, the dependent variable is whether
the student did the step correctly or not. Since we
are estimating a different baseline error rate for
each individual, we accounted for the dependence
by including the student as one of the predictor
variables. The other predictor variables are skill,
and the interaction between skills and skill orders.
The regression formula is

 ln[p/(1-p)] = β0 + αj+ Σβjxij + Σγjxijtij

 αj – the student
 xij - the skill, 1 for being present, 0 for being
absent
 tij – the ith skill order for the jth student
 xijtij– the interaction between the skill and the
skill order

4.2 Model Selection, R square, Log
likelihood, AIC and BIC

What would be a good heuristic in guiding the
search? We considered four candidates in our
study -- R square, Log likelihood, AIC and BIC. R
square, Log likelihood measures the fit between
the data and the model. AIC and BIC measure the
balance between the fit and the model complexity.

In multiple regression when we have more
predictor variables, the bias of the prediction
decreases and the variances increases. We need to
trade off fit and complexity. We used a commonly

Heuristic Better Model
Number
of Skills

Base model
Heuristic value

Better model
heuristic value

R square add FigurePart, add Backward 25 0.149 0.174
Log
likelihood

add FigurePart, partial split
Embed on circle-area 24 -2,638 -2,572

AIC add FigurePart, partial split
Embed on circle-area

24 5,440 5,353

BIC
merge FigureType, partial split
Embed on
FigureType.trapezoid

11 5,981 5,943

used criterion in evaluating our regression model -
- AIC) (Akaike Information Criterion)

AIC = -2*log-likelihood + 2*number of
parameters

When comparing fitted objects, the smaller the
AIC, the better the model is.

Another commonly used evaluator is
BIC(Bayesian Information Criterion).

BIC = -2*log-likelihood + number of parameters *
number of observations

Both AIC and BIC are asymptotically optimal and
consistent. When the true model is within the
candidate family of regression functions, BIC will
eventually select the true model. However if the
true model is not within the candidate family, AIC
asymptotically selects the model with the smallest
squared error (Yang 2003).

4.3 Implementation
We used Java to implement the model operators
and the A*search algorithm, and Splus 6.2 (Splus,
2001) to compute the logistic regression and the
heuristics

5. Results

5. 1 Better Models

We experimented with each of these heuristics
over the whole dataset. As the huge search space,
we limited our search within two tiers. Table 6
presents summarized results. Different heuristic
finds different better model. All the heuristic
found adding “figure part” improve the base
model. Log likelihood and AIC both found adding
“figure part” as a separate skill and splitting
“embed” on skill “circle-area” a better model than
the base model. All the better models found by the
heuristics except BIC increased the number of
skills.

5.2 Evaluating the models, the operators,
and the heuristic

A better cognitive model could be interpreted in
several ways. 1) It has better predictive power. It
terms of the learning curve, each skill should have
a smoother curve. 2) It is parsimonious. According
to Occam’s razor, a simpler theory is preferred to
the more complex. A cognitive model is no
exception. We may not always achieve both of
them. Thus, the balance of them becomes
necessary.

Among the three operators, partial split, add
increases the number of skills while merge

decreases it. R square, Log likelihood measures
the fit while AIC and BIC measure the balance
between the fit and the complexity.

Putting more severe penalty for complexity, BIC
leads to a smaller model than the other methods
(Wasserman, 2004). Not surprisingly, the better
model found by BIC is more parsimonious than
the base model. The model found by R square and
log likelihood is more complex.

6. Conclusion

We are developing a system that can rapidly and
automatically evaluate and improve a cognitive
model. The first purpose is to reveal the hidden
factors in a cognitive model through statistical
analysis and model search. The second purpose is
to make it easier to refine an existing cognitive
model. Currently, the system is able to generate a
statistically better model by incorporating the
learning factors into the base model. However, the
meaning of the better model still needs to be
investigated. At this point, it is not clear whether
we need to replace the base model with the better
model generated by the system. In investigate this
issue, we will further refine the system, search in a
wider space, and design better heuristics.

Acknowledgement

This research is sponsored by an NSF grant to the
Pittsburgh Science of Learning Center, a joint
research center located at the University of
Pittsburgh and Carnegie Mellon University.

References

Corbett A.T., Anderson, J.R., O’Brien A.T.(1993)
Student Modelling in the ACT Programming Tutor,
Cognitively Diagnostic Assessment, Hillsdale, NJ:
Erlbaum

Croteau E.A., Heffernan N. T., Koedinger K.R., (2004)
Why are Algebra Word Problem Difficult? Using
Tutoring Log Files and the Power Law of Learning to
Select the Best Fitting Cognitive Model, Proceedings of
Intelligent Tutoring Systems 2004

Freyberger J. (2004) Using Association Rules to Guide
a Search for Best Fitting Transfer Models of Student
Learning, Master Thesis, Worcester Polytechnic
Institute.

Junker B.W., Koedinger, K,, Trottini M.,(2000).
Finding Improvements in Student Models for Intelligent
Tutoring Systems via Variable Selection for a Linear
Logistic Test Model. ,presented at ann mtg of Psychom
Soc, 2000, Vancouver BC,

Koedinger K. R (2000), Research Statement for Dr.
Kenneth R. Koedinger, June 2000,

http://pact.cs.cmu.edu/koedinger/koedingerResearch.ht
ml

Koedinger K. R., Mathan S. (2004) Distinguishing
Qualitatively Different Kinds of Leaning Using Log
Files and Learning Curves, Proceedings of Intelligent
Tutoring Systems 2004

Koedinger K.R., Anderson, Hadley & Mark (1995).
Intelligent Tutoring Goes to School in the Big City.
Proceedings of the 7th World Conference on Art,
Intelligence and Education, AACE.

Splus (2001), Splus 6 for Windows Users’ Guide,
Insightful Corperation.

Yang, Y. (2004b) Can the strengths of AIC and BIC be
shared? -A confliict between model identification and
regression estimation, manuscript.

Wasserman L.(2004) All of Statistics, 1st edition,
Springer-Verlag New York, LLC

