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Abstract 
A good cognitive model is important to the 
effectiveness to an intelligent tutor. In this paper 
we present a method of combining the A* search 
algorithm and logistic regression to automate the 
improvement of a cognitive model by 1) 
automatically generating different models by 
mutating learning factors in a base model 2) 
integrating logistical regression to evaluate 
different  models  3)selecting the best model 
through a depth-first search algorithm.  

 
 

1. Introduction  

A cognitive model is a set of production rules or 
skills encoded in intelligent tutors to model how 
students solve problems. Production rules and skill 
are used interchangeably in this paper. Production 
rules embody the knowledge that students are 
trying to acquire, and allows the tutor to estimate 
each student’s learning of each skill as the student 
works through the exercises (Corbett, Anderson, 
O’Brien 1992). The model is usually generated by 
brainstorming and iterative refinement between 
subject experts, cognitive scientists and 
programmers. However, these first pass models 
are best guesses and our experience is that such 
models can be improved.. In this paper, we present 
a data-driven approach to evaluate the initial 
model and to automatically improve it by mining 
log data of student-tutor interaction.  We first 
introduce related work on cognitive model 
evaluation, then describe the cognitive model we 
have analyzed, the methodology we explored, and 
lessons learned on how best to apply data mining 
approaches to the problem of cognitive model 
improvement.   

2. Literature Review 

One measure of the performance of a cognitive 
model is how the data fits the model. Newell and 
Rosenbloom (1993) found the inverse relationship 
between the error rate of performance and the 
number of practice -- the error rate decreases as 
the amount of practice increases. The relationship 
can be depicted as a power function  

 Y = a Xb 
 Y – the error rate 

 X – the opportunity to practice a skill 
 a – the error rate on the first trial   
 b – the learning rate 

Figure 1 shows a steadily declining learning curve 
with the x-axis as the opportunity to practice a 
skill and the y-axis as the error rate.  

 

Figure 1 Power Law Learning Curve 

Corbett, Anderson, and O’Brien (1992) observed 
that the power relationship might not be readily 
apparent in some complex skills, which have blips 
in their learning curves, as is shown in figure 2. 
They also found the power relationship holds if 
the complex skill can be decomposed into some 
subskills, each of which has a smoother learning 
curve in figure 3.  

In other words, the original model was reasonable 
for many production rules, but the one shown in 
Figure 2 (Declare-Parameter) was too general.  By 
breaking the Declare-Parameter production into 
two more specific productions, Declare-First-
Parameter and Declare-Second-Parameter, allows 
the cognitive model to make a needed distinction 
(and thus provide better hint messages and do 
more accurate student modeling). 

Koedinger (2000) suggested am empirical method 
for improving cognitive models that involves 
experimental comparisons of student error rates on 
systematic variation of a core problem when just 
one problem feature or “difficulty factor” (e.g., 
first vs. second parameter or concrete vs. abstract 
presentation). He calls this approach “Difficulty 
Factor Assessment”. From theory and task 
analysis, researchers can hypothesize the likely 
factors that cause student difficulties. By assessing 
the performance difference on pairs of problems 
that vary by one factor, we can identify the hidden 



knowledge component that can be used to improve 
a cognitive model.  

 

 

 

 

 

Figure 2 Before Split 

 

Figure 3 After Split 

Inspecting learning curves, like those in Figures 2 
and 3, provides an alternative way to identify 
factors that characterize problem difficulty and, 
further, characterize how much practice on one 
problem in the tutor transfers to the next.  By 
considering changes in student performance over 
time (the “Opportunity” variable on the x-axis in 
Figures 2 and 3), a method we call “Learning 
Factors Analysis” goes a step further. Rather than 
simply visually inspecting learning curves for 
“blips” like those shown in Figure 2, we can 
automatically test whether including (or 
excluding) factors, like first vs. second parameter, 
leads to better fitting learning curves.  Better fits 
mean a cognitive model that better characterizes 
what is hard for a student what factors do or do 
not change how well one practice opportunity 
transfers to another (e.g., the 5th to 6th 
opportunity in Figure 2). Croteau, Heffernan, and 
Koedinger (2004) used Learning Factor Analysis 
to evaluate alternative models of algebra 
symbolization. 

3. Methodology 

3.1 Base Model 

 The base cognitive model used in our study is 
the model for the Area unit of Cognitive Tutor 
Geometry. It has 12 discrete skills -- circle-area, 
circle-circumference, circle-diameter, compose-
by-addition, compose-by-multiplication, equi-tri-
height, parallelogram-area, pentagon-area, 
rectangle-area, square-area, trapezoid-area, and 

triangle-area. It was generated from the third 
author’s analysis of geometry textbooks and an 
attempt to simply the original cognitive model he 
designed for this unit.  

3.2 Data acquisition and pre-processing 

 The data set was extracted from log files for 
students who used the tutor in their Pittsburgh 
classroom. The data has four columns – student, 
success, step, skill. Student is the names of the 
students. Step is the particular step in a tutor 
problem the students are involved in. Success is 
whether the student did that step correctly or not. 
Skill is the particular skill used in that step. The 
whole data set has 5431 data points involving 59 
students, and 139 problem steps.  

3.3 Difficulty Factors 

A factor is a hidden feature in a problem, which 
either makes the problem easier to solve or 
difficult to solve. It is usually found by theory and 
task analysis. Suppose the student is asked to find 
the areas of the following two circles (figure 4), 
given their radius. The production rule used in this 
problem is CIRCLE-AREA, i.e. given the radius r, 
compute the area S = π r2. Although the two 
problem requires the same production rule, some 
students may find it easier to solve the first one 
than the second one. The only difference between 
them is that the second circle is embedded in a 
square while the first circle is presented alone.  

 

 

 

 

 

  Figure 4 a hypothetic problem 

Thus, we can hypothesize that it is the 
embededness of the circle that causes the 
difficulty. We code it as a factor called “Embed” 
with two possible values “embed” or “alone”. For 
notation purpose, the first letter of the factor name 
is capitalized and all the values are lower cased. 
When the student encounters a problem with the 
embedded circle, we record the presence of the 
factor “Embed” with value “embed”. When the 
student encounters a problem with a single circle, 
we record the presence of the factor “Embed” with 
value “alone”. 

Other factors we found in the geometry lesson are 
“Repeat”, “Backward”, “BaseOrHeight”, 
“FigureType”, “FigurePart”. Their values are 
listed in table 1. 



“Repeat” means whether the production rule to be 
used is in its first trial. In the given example, if it 
is the first time for the student to use the 
production rule CIRCLE-AREA, the factor has 
value “initial”. Otherwise, it has value “repeat”.  

“Backward” means whether the production rule to 
be used is in its backward form, rather than the 
forward form taught. Imagine the student is taught 
how to compute the area of a circle using 
production rule CIRCLE-AREA S = π r2. While 
in the new problem, he is asked to compute the 
radius, given the area. The production rule to be 
used is in the backward form. Thus, the factor has 
value “backward” in this step. 

“FigureType” refers to the major geometric type in 
the problem. It has nine values, eight of which 
refer to specific geometric type in the step, and 
one with value zero denoting none previous figure 
applicable. In the previous circle problem, the 
FigureType has value “circle”. 

“FigurePart” refers the part of the figure to be 
computed. It has twelve values, eleven of which 
refer to specific part of the figure type in the step, 
and one with value zero denoting none previous 
part applicable. The previous problem asks the 
student to compute the circle area, and thus the 
FigureType has value “area”. 

3.4 skill orders and model operators 

Skill orders refer to the amount of times a 
particular skill is used for the same student. It 
increments every time the skill is used by the same 
student. Table 2 shows that student A used skill 
“Rectangle-area” in the first step and in the second 
step. Thus, the skill order for this skill in the 
second trial is 2. . Notice that the skill orders are 
calculated per person. Although the last skill order 
for “Rectangle-area” for student A is 2, the skill 
order for the first time use of “rectangle-area” by 
student B is 1 since B is a different student. 

A model operator is a mutation on a base model 
and generates several submodels by incorporating 
a factor. We implemented three model operators – 
partial split, add, and merge.  

When a base model A is partial split on a skill by 
an n-valued factor, that skill is possibly split into n 
new skills with the element of the factor. For 
example, table 1 shows that for student A skill 
“rectangle-area” is used in step 1 and 2 and factor 
“embed” is has value “alone” in step 1 and 
“embed” in step 2. Shown in table 2, after partial 
splitting skill “rectangle-area” on factor “Embed”, 
we get two new skills “rectangle-area-embed” and 
“rectangle-area-alone”. The skill order is 
recomputed every time an operator is performed 
on a model. Note worthily, the student has the first 
time to use rectangle-area-Embed in step 2 in the 

new model while it was her second time to use 
rectangle-area in step 2.  

Operator “Add” means that the factor with its 
possible value is simply added as a new skill to the 
original model. If we add “Embed” to model A, 
we will have one more skill called “Embed” while 
the rest skills remain unchanged. Table 4 shows 
the result after adding “Embed”.  

Operator “Merge” replaces all the skills with the 
factor value when the factor value is present. If we 
merge the base model according to factor 
“Embed”, we will end up with the following skills 
and skill orders (table 5).  

We name the submodel with the names of the all 
operations it has taken. E.g [add Embed], [merge 
FigurePart, add BaseOrHeight]. 

4. Model Search 

Given the base model, student performance data, 
defined factors, and the three operators, we can 
search a model space to find a model that better 
accounts for student performance data.  We 
implemented an A* search algorithm, an informed 
graph search algorithm guided by a heuristic, to 
search through the gigantic model space. The base 
model is partial split, added, and merged on all the 
factors and generates a list of submodels. Each of 
the submodels is then split, added, and merged. 
We also added model checking function in the 
search algorithm to recognize equivalent models 
to avoid duplicates. Figure 5 shows part of the 
search space.  

To limit the tree size and avoid out of memory 
problem, after each expansion, we only store the 
best 10 – 20 submodels according to the heuristic.  
The trade-off is the optimality vs. memory. By 
pruning low quality submodels along the search 
process, we can search a deeper level before the 
program consumes all memory. 

4.1 Multiple Logistic Regression 

Multiple regression is a method to study the 
relationship between a response variable Y and a 
group of predictor variables. Logistic regression is 
a type of multiple regression where the dependent  



 

Table 3 Learning Factors 
Factor Names Factor Values 
Embed alone embed       
Repeat initial repeat     
Backward forward backward       
BaseOrHeight 0 Base Height    
FigureType 0 triangle square rectangle trapezoid 
  parallelogram pentagon circle segment   

FigurePart 0 area 
area-
difference circumference diameter 

  radius area-combination base height apothem 
  side segment       

 
Table 2 Skills in the Base Model 

Student Step Skill Skill Order Factor - Embed 
A step1 Rectangle-area 1 alone 
A step2 Rectangle-area 2 embed 
A step3 Square-area 1 alone 
B step1 Rectangle-area 1 alone 
B step2 Compose-by-addition 1 embed 
B step3 Compose-by-addition 2 embed 

 
Table 3 Skills in the New Model by Splitting the Base Model on Factor “Embed” 

Student Step Skill Skill Order 
A step1 Rectangle-area-alone 1 
A step2 Rectangle-area-embed 1 
A step3 Square-area 1 
B step1 Rectangle-area 1 
B step2 Compose-by-addition 1 
B step3 Compose-by-addition 2 

 
Table 4 Skills in the New Model by Adding Factor “Embed” 

Student Step Skill Skill Order 
A step1 Rectangle-area 1 
A step1 Embed - alone 1 
A step2 Rectangle-area 2 
A step2 Embed - embed 1 
A step3 Square-area 1 
A step3 Embed - alone 2 
B step1 Rectangle-area 1 
B step1 Embed - alone 1 
B step2 Compose-by-addition 1 
B step2 Embed - embed 1 
B step3 Compose-by-addition 2 
B step3 Embed - embed 2 

 
Table 5 Skills in the New Model by Mergine Factor “Embed” 

Student Step Skill Skill Order 
A step1 Embed - alone 1 
A step2 Embed - embed 1 
A step3 Embed - alone 2 
B step1 Embed - alone 1 
B step2 Embed - embed 1 
B step3 Embed - embed 2 



 

 

Figure 5 Search Through a Model Space 

 

 
Table 6 Better models generated by different heuristics 

variable has a Bernoulli distribution with the 
probability of p, and the response variables have 
either a discrete distribution or continuous 
distribution. For a k-dimensional predictor 
variable X, the logit model solves 

  ln[p/(1-p)] = β0 + Σβjxij  

where xij is the the i-th observation value of a 
independent variable. 

In our method, the dependent variable is whether 
the student did the step correctly or not. Since we 
are estimating a different baseline error rate for 
each individual, we accounted for the dependence 
by including the student as one of the predictor 
variables. The other predictor variables are skill, 
and the interaction between skills and skill orders. 
The regression formula is 

 ln[p/(1-p)] = β0 + αj+ Σβjxij  + Σγjxijtij 

 

 αj – the student 
 xij - the skill, 1 for being present, 0 for being 
absent 
 tij – the ith skill order for the jth student 
 xijtij– the interaction between the skill and the 
skill order  

4.2 Model Selection, R square, Log 
likelihood, AIC and BIC 

What would be a good heuristic in guiding the 
search? We considered four candidates in our 
study -- R square, Log likelihood, AIC and BIC. R 
square, Log likelihood measures the fit between 
the data and the model. AIC and BIC measure the 
balance between the fit and the model complexity.  

In multiple regression when we have more 
predictor variables, the bias of the prediction 
decreases and the variances increases. We need to 
trade off fit and complexity. We used a commonly 

Heuristic Better Model 
Number 
of Skills 

Base model 
Heuristic value 

Better model 
heuristic value 

R square add FigurePart, add Backward 25 0.149 0.174 
Log 
likelihood 

add FigurePart, partial split 
Embed on circle-area 24 -2,638 -2,572 

AIC add FigurePart, partial split 
Embed on circle-area 

24 5,440 5,353 

BIC 
merge FigureType, partial split 
Embed on 
FigureType.trapezoid 

11 5,981 5,943 



used criterion in evaluating our regression model -
- AIC) (Akaike Information Criterion)  

AIC = -2*log-likelihood + 2*number of 
parameters 

When comparing fitted objects, the smaller the 
AIC, the better the model is. 

Another commonly used evaluator is 
BIC(Bayesian Information Criterion). 

BIC = -2*log-likelihood + number of parameters * 
number of observations  

Both AIC and BIC are asymptotically optimal and 
consistent. When the true model is within the 
candidate family of regression functions, BIC will 
eventually select the true model. However if the 
true model is not within the candidate family, AIC  
asymptotically selects the model with the smallest 
squared error (Yang 2003).  
 
4.3 Implementation 
We used Java to implement the model operators 
and the A*search algorithm, and Splus 6.2 (Splus, 
2001) to compute the logistic regression and the 
heuristics 

5. Results 

5. 1 Better Models 

We experimented with each of these heuristics 
over the whole dataset. As the huge search space, 
we limited our search within two tiers. Table 6 
presents summarized results. Different heuristic 
finds different better model. All the heuristic 
found adding “figure part” improve the base 
model. Log likelihood and AIC both found adding 
“figure part” as a separate skill and splitting 
“embed” on skill “circle-area” a better model than 
the base model. All the better models found by the 
heuristics except BIC increased the number of 
skills. 

5.2 Evaluating the models, the operators, 
and the heuristic  

A better cognitive model could be interpreted in 
several ways. 1) It has better predictive power. It 
terms of the learning curve, each skill should have 
a smoother curve. 2) It is parsimonious. According 
to Occam’s razor, a simpler theory is preferred to 
the more complex. A cognitive model is no 
exception.  We may not always achieve both of 
them. Thus, the balance of them becomes 
necessary.   

Among the three operators, partial split, add 
increases the number of skills while merge 

decreases it. R square, Log likelihood measures 
the fit while AIC and BIC measure the balance 
between the fit and the complexity.  

Putting more severe penalty for complexity, BIC 
leads to a smaller model than the other methods 
(Wasserman, 2004). Not surprisingly, the better 
model found by BIC is more parsimonious than 
the base model. The model found by R square and 
log likelihood is more complex.  

6. Conclusion 

We are developing a system that can rapidly and 
automatically evaluate and improve a cognitive 
model. The first purpose is to reveal the hidden 
factors in a cognitive model through statistical 
analysis and model search. The second purpose is 
to make it easier to refine an existing cognitive 
model. Currently, the system is able to generate a 
statistically better model by incorporating the 
learning factors into the base model. However, the 
meaning of the better model still needs to be 
investigated. At this point, it is not clear whether 
we need to replace the base model with the better 
model generated by the system. In investigate this 
issue, we will further refine the system, search in a 
wider space, and design better heuristics.  
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