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ABSTRACT 
Conceptual understanding of representations and fluency in using 
representations are important aspects of expertise. However, little 
is known about how these competencies interact: does representa-
tional understanding facilitate learning of fluency (understanding-
first hypothesis), or does fluency enhance learning of representa-
tional understanding (fluency-first hypothesis)? We analyze log 
data obtained from an experiment that investigates the effects of 
intelligent tutoring systems (ITS) support for understanding and 
fluency in connection-making between fractions representations. 
The experiment shows that instructional support for both repre-
sentational understanding and fluency are needed for students to 
benefit from the ITS. In analyzing the ITS log data, we contrast 
the understanding-first hypothesis and the fluency-first hypothe-
sis, testing whether errors made during the learning phase mediate 
the effect of experimental condition. Finding that a simple statis-
tical model does not the fit data, we searched over all plausible 
causal path analysis models. Our results support the understand-
ing-first hypothesis but not the fluency-first hypothesis. 
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Causal path analysis modeling, multiple representations, intelli-
gent tutoring systems. 

1. INTRODUCTION 
Representational understanding and representational fluency are 
important aspects of learning in any domain [1]. When working 
with representations (e.g., formulae, line graphs, path diagrams), 
students need conceptual understanding of these representations 
(representational understanding). Students also need to use the 
representations to solve problems fast and effortlessly (representa-
tional fluency). Science and mathematics instruction typically 
employs multiple graphical representations to help students learn 
about complex domains [2]. For instance, instructional materials 
for fractions use circle and rectangle diagrams to illustrate frac-
tions as parts of a whole, and number lines to depict fractions in 
the context of measurement [3-5]. Multiple representations have 
been shown to lead to better learning than a single representation, 
provided that students make connections between them [6-7]: to 
benefit from the multiplicity of representations, students need to 
conceptually understand how different representations relate to 
one another, and they need to translate between them [8-11]. Yet, 
students find it difficult to make these connections [8], and tend 
not to make them spontaneously [12]. Therefore, they need to be 
supported in doing so [7]. Based on [1], we distinguish between 
representational understanding as conceptual understanding of 
connections between different graphical representations, and re-

presentational fluency as the ability to fast and effortlessly make 
these connections. To benefit from multiple graphical representa-
tions, students need to acquire both representational understanding 
[8], and they need to develop representational fluency [13].  
In the present paper, we use log data obtained from a classroom 
experiment that uses a successful type of intelligent tutoring sys-
tem (ITS) to help students learn about fractions while comparing 
different ways to support representational understanding and 
representational fluency. The experiment demonstrates that both 
instructional support for representational understanding and repre-
sentational fluency are necessary for students to benefit from mul-
tiple graphical representations of fractions [14]. The goal of the 
present paper is to augment the findings from the traditional anal-
ysis of pretest and posttest data by using causal path analysis 
modeling to analyze mediation effects that can explain the nature 
of how representational understanding and representational fluen-
cy interact. Does representational understanding facilitate stu-
dents’ acquisition of representational fluency? Or does representa-
tional fluency enhance students’ ability to acquire representational 
understanding? We contrast two competing hypotheses. Accord-
ing to the understanding-first hypothesis, representational under-
standing equips students with the necessary knowledge about 
structural correspondences between graphical representations and 
about what differences between the representations are incidental, 
allowing students to attend to relevant aspects of the graphical 
representations while developing representational fluency. There-
fore, students who receive support for representational under-
standing should make fewer errors on fluency-building problems 
compared to students who do not receive support for representa-
tional understanding. By contrast, the fluency-first hypothesis 
predicts that representational fluency frees up the cognitive re-
sources that students need to acquire understanding of these con-
nections. Therefore, students who receive fluency-building sup-
port should make fewer errors on problems supporting representa-
tional understanding compared to students who do not receive 
fluency-building support. The answer to the question of how ac-
quisition of representational understanding and representational 
fluency interact has important implications for the instructional 
design of ITSs and other educational technologies. If representa-
tional understanding enhances the acquisition of representational 
fluency (understanding-first hypothesis), instructional materials 
should support representational understanding before representa-
tional fluency. If, on the other hand, representational fluency faci-
litates students’ acquisition of representational understand-
ing(fluency-first hypothesis), instructional materials should sup-
port representational fluency before supporting representational 
understanding.

 



 
Figure 1. Worked example support for representational understanding: students use a worked example with a rectangle (part A, 
upper left) to guide their work on a fractions problem with a number line (part B, upper right). At the end (part C, bottom), stu-

dents are prompted to integrate both representations by responding to drop-down menu questions. 
To gain further insights into how support for representational 
understanding and representational fluency affect students’ inte-
ractions with an ITS for fractions, we employ causal path analysis. 
In doing so, we contrast mediation models that correspond to the 
understanding-first hypothesis, and to the fluency-first hypothesis.  
Specifically, we investigate whether errors that students make 
during the learning phase mediate the interaction effect between 
support for representational understanding and representational 
fluency on students’ learning. Our results are in line with the un-
derstanding-first hypothesis, but not with the fluency-first hypo-
thesis.  
The remainder of this paper is structured as follows. We first de-
scribe the ITS that we used to carry out the experimental study. 
We then provide a brief overview of the experimental design and 
the results obtained from the analysis of pretests and posttests. 
The main focus of this paper is on describing the causal path anal-
ysis we conducted to investigate the interaction of instructional 
support for representational understanding and representational 
fluency on students’ learning behaviors as identified by the tutor 
log data. We end by discussing the implications of our analysis for 
the instructional design of learning materials, and by outlining 
open questions that future research should be address. 

2. THE FRACTIONS TUTORING SYSTEM 
The Fractions Tutor used in the experiment is a type of Cognitive 
Tutor. Cognitive Tutors are grounded in cognitive theory and 
artificial intelligence. Cognitive Tutors have been shown to lead 
to substantial learning gains in a number of studies [15]. We 
created the Fractions Tutor with Cognitive Tutor Authoring Tools 
[16]. The design of the tutor interfaces and of the interactions 
students engage in during problem solving are based on a number 
of small-scale user studies, a knowledge component model devel-
oped based on Cognitive Task Analysis of the learning domain 
[17], and a series of in vivo experiments [6, 12, 18].  
The Fractions Tutor uses multiple interactive graphical represen-
tations (circles, rectangles, and number lines) that are typically 
used in instructional materials for fractions learning [2-3, 5]. The 
Fractions Tutor covers a comprehensive set of topics ranging from 
identifying fractions from graphical representations, to equivalent 

fractions and fraction addition. Taken together, the Fractions Tu-
tor comprises about ten hours of supplemental instructional ma-
terial. Students solve tutor problems by interacting both with frac-
tions symbols and with the graphical representations. As is com-
mon with Cognitive Tutors, students receive error feedback and 
hints on all steps. In addition, each tutor problem includes concep-
tually oriented prompts to help students relate the graphical repre-
sentations to the symbolic notation of fractions.  

3. EXPERIMENT 
The goal of the experimental study (cf. [14] for a detailed descrip-
tion) was to investigate the hypothesis that students learn more 
robustly when receiving instructional support for both representa-
tional understanding and support for representational fluency. We 
conducted a classroom experiment with 599 4th- and 5th-grade 
students from five elementary schools in the United States. Stu-
dents worked with the Fractions Tutor for about ten hours during 
their regular mathematics class. 
We contrasted two experimental factors. One factor, support for 
representational understanding in making connections had three 
levels: no support, auto-linked support in which the Fractions 
Tutor automatically made changes in one representation as stu-
dents manipulated another, and worked examples. Figure 1 pro-
vides an example of the Fractions Tutor problem that uses worked 
examples (WEs) to support representational understanding. Stu-
dents used a worked example with a familiar representation as a 
guide to make sense of an isomorphic problem with a less familiar 
representation. This factor was crossed with a second experimen-
tal factor, namely, whether or not students received support for 
representational fluency in making connections: students had to 
visually estimate whether different types of graphical representa-
tions showed the same fraction. Figure 2 shows an example of a 
fluency-building problem (FL). Students in all conditions worked 
on 80 tutor problems: eight problems per topic (e.g., equivalent 
fractions, addition, subtraction, etc.). In each topic, the first four 
tutor problems were single-representation problems (i.e., they 
included only a circle, only a rectangle, or only a number line, and 
no connection-making support). The last four tutor problems were 
multiple-representation problems and differed between the experi-



 
Figure 2. Fluency-building support: students sort graphical representations by dragging-and-dropping them into slots that show 

equivalent fractions. 
mental conditions. For instance, students in the worked examples 
only condition (WE) received four worked examples problems. 
Students in the fluency-only condition (FL) received four fluency-
building problems. Students in the worked examples plus fluency 
condition (WE-FL) received two worked examples problems, 
followed by two fluency-building problems. Table 1 illustrates 
this procedure for two consecutive topics for each of these three 
conditions. The same sequence of eight problems was repeated for 
each of the ten  topics the Fractions Tutor covered. 

Table 1. Problem sequence per condition: for each topic, 
problems 1-4 (P1-P4) are single-representation problems (S); 
problems 5-8 are multiple-representation problems: worked 

examples (WE, blue-underlined) or fluency-building problems 
(FL, green-italicized). 

Cond. Topic P1 P2 P3 P4 P5 P6 P7 P8 

WE 
1 S S S S WE WE WE WE 
2 S S S S WE WE WE WE 

… … 

FL 
1 S S S S FL FL FL FL 
2 S S S S FL FL FL FL 

… … 

WE-
FL 

1 S S S S WE WE FL FL 
2 S S S S WE WE FL FL 

… … 
Results based on the analysis of pretest, immediate posttests, and 
delayed posttest (administered one week after the immediate post-
test) from 428 students confirmed the hypothesis that a combina-
tion of instructional support for representational understanding 
and representational fluency is most effective: the interaction 
between support for understanding and fluency was significant, 
F(2, 351) = 3.97, p < .05, ηp² =.03, such that students who re-
ceived both types of support performed best. Worked examples 
are the more effective type of support for representational under-
standing, when paired support for representational fluency: within 
the conditions with support for representational fluency, there was 
a significant effect of support for representational understanding, 
F(2, 343) = 4.34, p < .05, ηp² =.07. However, within the condi-
tions without support for representational fluency, there was no 

significant effect of support for representational understanding (F 
< 1). Finally, our results show an advantage of the WE-FL condi-
tion over the number-line control, t(115) = 2.41, p < .05, d = .27. 
The results from the experimental study raise interesting new 
questions about the relation between representational understand-
ing and representational fluency. It is surprising that there were no 
significant main effects for support for representational under-
standing or representational fluency alone; only the combination 
of both enhanced students’ learning from multiple graphical re-
presentations. Did support for understanding enable students to 
benefit from fluency-building support, or vice versa? We address 
this question in the remainder of this paper. 

4. DATA SET 
The analyses in this paper are based on the data obtained from the 
experimental study just described. Students in the experiment 
received a pretest on the day before they started to work with the 
Fractions Tutor. The day after students finished working with the 
Fractions Tutor, they received an immediate posttest. One week 
after the immediate posttest, students were given a delayed post-
test. All three tests were equivalent (i.e., they contained the same 
items with different numbers). Students worked with the Fractions 
Tutor for about ten hours and had to complete each tutor problem. 
All interactions with the Fractions Tutor were logged. 

4.1 Selecting Conditions to Include into Caus-
al Path Analysis Modeling 
In the light of the interaction effect between support for represen-
tational fluency and support for representational understanding 
through worked examples, the experimental conditions of interest 
for further analyses are worked example (WE), fluency (FL), and 
worked examples paired with support fluency (WE-FL). We thus 
selected these three conditions to include into the causal path 
analysis model. A total of 190 students were included in the anal-
ysis (n = 59 in the WE condition, n = 73 in the FL condition, and 
n = 58 in the WE-FL condition). Table 2 shows the means and 
standard deviation of students’ performance on pretest, immediate 
and delayed posttest by condition. 



4.2 Defining Mediation Variables 
As the goal was to investigate whether support for representation-
al understanding helps students benefit from support for represen-
tational fluency or vice versa, we compared students’ perfor-
mance on worked-example problems (i.e., support for representa-
tional understanding) between the WE and the WE-FL condition, 
and students’ performance on fluency-building problems between 
the FL and the WE-FL condition. Specifically, we compared per-
formance on those tutor problems that were the same across these 
pairs of conditions. To compare the WE and WE-FL conditions, 
we used errors students made on problems P5 and P6 (see the 
blue-underlined problems in Table1). To compare the FL and 
WE-FL conditions, we used errors students made on problems P7 
and P8 (see the green-italic problems in Table1). We expect that, 
if representational understanding facilitates the acquisition of 
representational fluency, students in the WE-FL condition will 
make fewer errors on fluency-building problems than students in 
the FL condition. If representational fluency facilitates the acqui-
sition of representational understanding, we expect the WE-FL 
condition to make fewer errors on worked-examples problems 
than students in the WE condition. 

Table 2. Means and standard deviation (in parentheses) on 
pretests and posttests per condition. 

Condition Pretest Immediate 
posttest 

Delayed 
posttest 

WE .36 (.22) .43 (.20) .49 (.26) 

FL .31 (.21) .37 (.22) .44 (.24) 

WE-FL .39 (.21) .52 (.24) .58 (.26) 
A first step in this analysis was to use the tutor log data to identify 
measures of errors that students made on these problems. Rather 
than using the overall error rate, we applied the knowledge com-
ponent model [17] that underlies the problem structure of the 
Fractions Tutor to categorize the errors students made while 
working on the tutor problems. Doing so allows for a much more 
fine-grained analysis of students’ errors than the overall error rate 
does. The knowledge component model describes a meaningful 
set of steps within a tutor problem which provide practice oppor-
tunities for practicing a “unit” of knowledge. For example, every 
time a student is asked to enter the numerator of a fraction, he/she 
has the opportunity to practice knowledge about what the numera-
tor of a fraction is. Worked-example problems and fluency-
building problems cover a different set of knowledge components, 
but the same knowledge components occur repeatedly across dif-
ferent worked example problems and fluency-building problems, 
respectively. Altogether, the knowledge component model led to 
12 types of errors that students could make on worked-example 
problems, and 11 types of errors that students could make on flu-
ency-building problems. 

Next, we had to narrow the number of error categories to include 
in the causal path analysis model. We included only those error 
types which (1) were significant predictors of students’ posttest 
performance, while controlling for pretest performance, and (2) 
significantly differed between conditions. To determine whether 
an error type was a significant predictor of students’ immediate 
posttest performance, we conducted linear regression analyses 
with posttest performance as the dependent variable, and pretest 
performance and number of error type as predictors. 

To determine whether error types differed significantly between 
conditions, we conducted Chi-square tests with number of error 
type as dependent variable and condition as independent variable 

(i.e., WE vs. WE-FL for error types that students could make on 
worked-example problems, and FL vs. WE-FL for error types that 
students could make on fluency-building problems). For both 
analyses, we adjusted for multiple comparisons using the Bonfer-
roni correction. On worked-example problems, six error types 
differed significantly between conditions, but only two error types 
were significant predictors of posttest performance (both of them 
passed both the Chi-square test and the regression test). On fluen-
cy-building problems, eight error types differed significantly be-
tween conditions, and four were significant predictors of posttest 
performance (three of them passed both the Chi-square test and 
the regression test). Table 3 provides an overview of the error 
types we selected for further analyses. 

Table 3. Selected error types and number of error-types per 
condition. 

Error type Description # in 
WE  

# in 
FL  

# in 
WE-FL  

place1Error Locating 1 on the 
number line given a 
dot on the number line 
and the fraction it 
shows 

150 n/a 222 

SE-Error Self-explanation error, 
response to reflection 
questions in drop-
down menu format 

132
0 

n/a 1629 

equivalen-
ceError 

Finding equivalent 
fraction representa-
tions 

n/a 289
9 

2157 

improper-
MixedError 

Finding representa-
tions of improper frac-
tions 

n/a 138
0 

1608 

Name-
Circle-
MixedError 

Finding circle repre-
sentations that show 
the same fraction as a 
number line or a rec-
tangle 

n/a 355 126 

5. PATH ANALYSIS MODELING 
In order to investigate whether and how error types mediate the 
effect of condition, we first specified, estimated, and tested two 
path analytical structural equation models [19-20] – one which 
compared the WE and WE-FL conditions using error types made 
on the worked-example problems as mediators, and one which 
compared the FL and WE-FL conditions using error types made 
on the fluency-building problems as mediators. Structural equa-
tion models provide a unified framework within which to test 
mediation hypotheses, to estimate total effects, and also to sepa-
rate direct from indirect effects. The models that represented our 
hypotheses in both experiments were decisively rejected by the 
data, and in such a case it is not appropriate to use the model to 
test mediation hypotheses or estimate effects. Our strategy was to 
use the Tetrad IV program1 to search for alternative models that 

                                                                 
1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 

contains a causal model simulator, estimator, and over 20 model 
search algorithms, many of which are described and proved 
asymptotically reliable in [23] Spirtes, P., Glymour, C. and 
Scheines, R. Causation, Prediction, and Search. MIT Press, 
2000.   

http://www.phil.cmu.edu/projects/tetrad


are both theoretically plausible and consistent with the data. In 
this section, we describe the path analytic models that represent 
our hypotheses, describe the search algorithms we use to find for 
alternative models, and briefly summarize the results of our 
search. 

5.1 Modeling our Hypotheses 

 
Figure 2. Path model for understanding-first hypothesis. 

 

 
Figure 3. Path model for fluency-first hypothesis. 

Our model hypotheses correspond to the understanding-first hypo-
thesis and the fluency-first hypothesis described above. The un-
derstanding-first hypothesis predicts that support for representa-
tional understanding enhances students’ ability to benefit from 
fluency-building problems by equipping students with the know-
ledge they need to attend to relevant features of the graphical 
representations while developing representational fluency. There-
fore, students who receive support for representational under-
standing should make fewer errors on fluency-building problems 
compared to students who do not receive support for representa-
tional understanding. Therefore, the understanding-first hypothe-
sis predicts that support for representational understanding in-
creases learning by reducing the number of errors made on fluen-
cy-building problems. Figure 32 depicts the model we specified to 

                                                                 
2 In path models of this type, also called "causal graphs" [22] Ib-

id., each arrow, or directed edge, represents a direct causal rela-
tionship relative to the other variables in the model.  For exam-
ple, in Figure 3 the condition is a direct cause of the mediator 

test the understanding-first hypothesis. Each node in the path 
model refers to a variable in the data set: WE = whether or not 
students receive worked-example support for representational 
understanding (i.e., whether they are in the FL vs. in the FL-WE 
condition), nameCircleMixedError, equivalenceError, and im-
properMixedError being the errors students could make on fluen-
cy-building problems (see Table 3), pre = performance on the 
pretest, post = performance on the immediate posttest, delpost = 
performance on the delayed posttest. 
The fluency-first hypothesis predicts that support for representa-
tional fluency enhances students’ ability to benefit from support 
for representational understanding because representational fluen-
cy frees up the cognitive resources that students can invest in 
sense-making processes that lead to representational understand-
ing. Therefore, students who receive support for representational 
fluency should make fewer errors on worked-example problems, 
compared to students who do not receive support for representa-
tional fluency. Therefore, the fluency-first hypothesis predicts that 
support for representational fluency increases learning by reduc-
ing the number or errors made on worked-example problems. 
Figure 4 depicts the model that we specified to test the fluency-
first hypothesis. Each node in the path model refers to a variable 
in the data set: FL = whether or not students receive support for 
representational fluency (i.e., whether they are in the WE vs. in 
the FL-WE condition), SE-Error and place1Error being the errors 
students could make on worked-example problems (see Table 3),  
pre = performance on the pretest, post = performance on the im-
mediate posttest, delpost = performance on the delayed posttest. 
Using normal theory maximum likelihood to estimate the parame-
ters of these models, we find that in each case the deviation be-
tween the estimated and the observed covariance matrix is too 
large to be explained by chance (for the model for the understand-
ing-first hypothesis in Figure 3: χ² = 30.88, df = 9, p < .00013, and 
for the model for the fluency-first hypothesis in Figure 4: χ² = 
49.14, df = 6, p < .0001), thus the models do not fit the data and 
the parameter estimates cannot be trusted4. 

5.2 Model Search 
To search for alternatives, we used the GES algorithm in Tetrad 
IV along with background knowledge constraining the space of 
models searched [19] to those that are theoretically tenable and 
compatible with our experimental design. In particular, we assume 
that our intervention variables are exogenous, that our interven-
tion variables are causally independent, that the pretest is exogen-
                                                                                                           

variables, but only affect the posttest indirectly through these 
mediators.   

3 The usual logic of hypothesis testing is inverted in path analysis. 
The p-value reflects the probability of seeing as much or more 
deviation between the covariance matrix implied by the esti-
mated model and the observed covariance matrix, conditional 
on the null hypothesis that the model that we estimated was the 
true model. Thus, a low p-value means the model can be re-
jected, and a high p-value means it cannot.  The conventional 
threshold is .05, but like other alpha values, this is somewhat 
arbitrary. The p-value should be higher at low sample sizes and 
lowered as the sample size increases, but the rate is a function of 
several factors, and generally unknown.   

4 We also tested variations of these models in which we added 
direct paths from the condition variables to the post-test and de-
layed post-test. These variants are also clearly rejected by our 
data. 



ous and causally independent of intervention, that the mediators 
are prior to the immediate posttest and to the delayed posttest, and 
that the immediate posttest is prior to the delayed posttest. Even 
under these constraints, there are at least 225 (over 33 million) 
distinct path models for the understanding-first hypothesis, and 
225 (over 33 million) for the fluency-first hypothesis.  
The qualitative causal structure of each linear structural equation 
model can be represented by a Directed Acyclic Graph (DAG). If 
two DAGs entail the same set of constraints on the observed cova-
riance matrix,5 then we say that they are empirically indistin-
guishable. If the constraints considered are independence and 
conditional independence, which exhaust the constraints entailed 
by DAGs among multivariate normal varieties, then the equiva-
lence class is called a pattern [20-21]. Instead of searching in 
DAG space, the GES algorithm achieves efficiency by searching 
in pattern space. The algorithm is asymptotically reliable,6 and 
outputs the pattern with the best Bayesian Information Criterion 
(BIC) score.7 The pattern identifies features of the causal structure 
that are distinguishable from the data and background knowledge, 
as well as those that are not. The algorithm’s limits are primarily 
in its background assumptions involving the non-existence of 
unmeasured common causes and the parametric assumption that 
causal dependencies can be modeled with linear functions. 

5.3 Results 
Figure 5 shows a model found by GES for the understanding-first 
hypothesis, with coefficient estimates included. The model fits the 
data reasonably well8 (χ2 = 16.10, df = 6, p = .013). Students with 
higher pretest scores make fewer nameCircleMixedErrors, and 
they perform better on the immediate and the delayed posttest. 
Receiving worked-example support for representational under-
standing (i.e., being in the WE-FL condition and not in the FL 
condition) increases nameCircleMixedErrors, which in turn de-
creases performance on the immediate posttest. In other words, 
nameCircleMixedErrors mediate a negative effect of worked ex-
amples on students’ learning. Receiving worked-example support 
for representational understanding also reduces equivalenceErrors 
and improperMixedErrors. Since making more improperMixedEr-
rors leads to worse performance on the immediate and the delayed 
posttests, equivalenceErrors and improperMixedErrors mediate 
the positive effect of the worked-example support on students’ 
learning. Support for representational understanding through 
worked examples does not have a direct impact on students’ post-
test performance. The overall positive effect of worked examples 
on students’ learning through equivalenceErrors and improper-
MixedErrors is larger than the negative effect through nameCir-
cleMixedErrors. (See Table 3 for a description of the errors.) 

                                                                 
5 An example of a testable constraint is a vanishing partial correla-

tion, e.g., ρXY.Z = 0. 
6 Provided the generating model satisfies the parametric assump-

tions of the algorithm, the probability that the output equiva-
lence class contains the generating model converges to 1 in the 
limit as the data grows without bound. In simulation studies, the 
algorithm is quite accurate on small to moderate samples. 

7 All the DAGs represented by a pattern will have the same BIC 
score, so a pattern’s BIC score is computed by taking an arbi-
trary DAG in its class and computing its BIC score. 

8 The usual logic of hypothesis testing is inverted in path analysis: 
a low p-value means the model can be rejected. 

Figure 6 shows a model found by GES for the fluency-first hypo-
thesis. The model fits the data well (χ2 = 8.32, df = 5, p = .14). 
Students with higher pretest scores make fewer SE-Errors and 
perform better on both posttests. Having fluency-building support 
(i.e., being in the WE-FL condition as opposed to being in the WE 
condition) increases SE-Errors, which reduces performance on the 
immediate and the delayed posttest. In other words, SE-Errors 
mediate a negative effect of fluency-building support. There are 
no further mediations of having fluency-building support, but 
there is a direct positive effect of fluency-building support on 
students’ performance on the immediate posttest. (See Table 3 for 
a description of the errors.) 

 
Figure 4. The model found by GES for the understanding-first 

hypothesis, with parameter estimates included. 

 
Figure 5. The model found by GES for the fluency-first hypo-

thesis, with parameter estimates included. 

6. DISCUSSION 
Taken together, results from the causal path analysis models sup-
port the understanding-first hypothesis but not the fluency-first 
hypothesis: receiving worked-example support for representation-
al understanding helps students learn from fluency-building prob-



lems. The model in Figure 5 demonstrates that, although students 
who receive worked-example support make more nameCircle-
MixedErrors, they make fewer equivalenceErrors and improper-
MixedErrors. NameCircleMixedErrors are possible early in the 
Fractions Tutor curriculum, whereas equivalenceErrors and im-
properMixedErrors occur later in the Fractions Tutor curriculum. 
The analysis therefore suggests that support for representational 
understanding reduces errors later during the learning phase, 
which leads to better overall learning. This finding is particularly 
interesting when we recall that we only compare the errors stu-
dents make on fluency-building problems P7 and P8 (see Table 
1). For the FL condition, problems P5 and P6 are also fluency-
building problems, whereas for the WE-FL condition, problems 
P5 and P6 are worked-examples problems. That is, students in the 
FL condition receive more practice on fluency-building problems, 
which should increase their performance on fluency-building 
problems. Based on practice effects, we would thus expect that 
students in the FL condition would outperform students in the 
WE-FL condition on problems P7 and P8 (e.g., P7 is the first time 
the WE-FL condition encounters a fluency-building problem, but 
the third time the FL condition encounters a fluency-building 
problem, for the given topic). However, we find the opposite for 
errors that occur later in the curriculum: worked-example support 
for representational understanding leads to better performance on 
fluency-building problems, even compared to students who re-
ceived more practice on the same types of fluency-building prob-
lems. Since higher performance on these problems (i.e., fewer 
equivalenceErrors and fewer improperMixedErrors) leads to bet-
ter performance on the immediate posttest, while controlling for 
pretest, it seems that support for representational understanding 
prepares students to learn better from subsequent fluency-building 
problems. 
The model in Figure 6 does not provide support for the fluency-
first hypothesis. We do not find evidence that fluency-building 
support helps students benefit from support for representational 
understanding. Although we find a direct positive effect of fluen-
cy-building support on students’ learning, the mediation effect 
shown in Figure 6 is evidence that receiving fluency-building 
support comes at the cost of lower performance on worked-
examples problems: students tend to make more SE-Errors and 
more place1Errors. This finding is somewhat expected.  Students 
in the WE condition work on twice as many worked-examples 
problems than the WE-FL condition, so they receive more prac-
tice on the worked-examples problems compared to the WE-FL 
condition (see Table 1). As students in the WE-FL condition have 
less practice on worked-examples problems, they are expected to 
perform somewhat worse on those problems – and that is what the 
model in Figure 6 confirms. Yet, since we do not find evidence 
that receiving fluency-building support also benefits students’ 
learning from worked-example support for representational under-
standing, our results do not support the fluency-first hypothesis. 
Our findings from path analysis modeling demonstrate the impor-
tance of model search. None of our initial hypothesis models fit 
the data, but there are thousands of plausible alternatives. Further, 
estimating path parameters with a model that does not fit the data 
is scientifically unreliable. Parameter estimates, and the statistical 
inferences we make about them with standard errors etc., are all 
conditional on the model specified being true everywhere except 
the particular parameter under test.  
Even if our initial hypotheses had fit the data well, it would have 
been important to know whether there were alternatives that ex-
plained the same data. The GES algorithm implemented in Tetrad 
IV enabled us to find plausible models that fit the data well. The 

models we found in Figures 5 and 6 allow us to estimate and test 
path parameters free from the worry that the model within which 
the parameters are estimated is almost surely mis-specified, as is 
the case for the models in Figures 3 and 4.  
Several caveats need to be emphasized, lest we give the false im-
pression that we think we have “proved” the causal relationships 
that appear in the path diagrams shown in Figures 5 and 6. First, 
the GES algorithm assumes that there are no unmeasured con-
founders (hidden common causes), an assumption that is almost 
certainly false in this and in almost any social scientific case, but 
one that is routinely employed in most observational studies.9 In 
future work, we will apply algorithms (e.g., FCI) that do not make 
this assumption, and see whether our conclusions are robust 
against this assumption. Second, although we did include inter-
vention interaction in our model search and did test for interac-
tions between pretest and mediators, by no means were our tests 
exhaustive, and by no means can we rely on the assumption that 
the true relations between the variables we modeled are linear, as 
the search algorithms assume. The assumption of linear relation-
ships is reasonable but not infallible. Third, we have a sample of 
190 students, and although that is sizable compared to many Cog-
nitive Tutor studies, model search reliability goes up with sample 
size, but down with model complexity and number of variables, 
and is impossible to put confidence bounds on finite samples [23].  

7. CONCLUSIONS AND FUTURE WORK 
Our findings provide important insights into the nature of the 
interaction between students’ acquisition representational under-
standing and representational fluency. Our analysis supports the 
notion that the acquisition of representational understanding en-
hances students’ ability to benefit from instructional support for 
representational fluency, more so than the other way around. 
Therefore, our findings suggest that instruction should provide 
support for representational understanding before providing sup-
port for representational fluency. 
Although our analyses provide support for the understanding-first 
hypothesis, but not for the fluency-first hypothesis, both remain 
valid hypotheses. One important caveat of the analyses presented 
here is that, within each curricular topic of the Fractions Tutor, all 
students in the WE-FL condition received support for representa-
tional understanding before support for representational fluency 
(i.e., there was no FL-WE condition). We therefore cannot draw 
definite conclusions about the relative effectiveness of providing 
support for representational understanding before support for 
representational fluency (WE-FL) and providing support for re-
presentational fluency before support for representational under-
standing (FL-WE). Our findings based on causal path analysis 
modeling merely suggest that the WE-FL condition would lead to 
better learning than a FL-WE condition. This notion remains to be 
tested empirically. 
Future research should also investigate whether our findings are 
specific to the domain of fractions learning, and to the acquisition 
of representational understanding and representational fluency in 
making connections between multiple graphical representations. 
Graphical representations are universally used as instructional 
tools to emphasize and illustrate conceptually relevant aspects of 
the domain content. Furthermore, in any given domain, students 

                                                                 
9 Although our data are from a study in which we intervened on 

intervention, we did not directly intervene on our mediator or 
outcome variables. Thus these parts of our model are subject to 
the same assumptions as a non-experimental study.  



need to develop representational fluency in using graphical repre-
sentations to solve problems, and they need to effortlessly trans-
late between different kinds of representations. But representa-
tional understanding and representational fluency are not limited 
to learning with graphical representations: representational under-
standing and representational fluency also play a role in using 
symbolic and textual representations. For example, should stu-
dents acquire representational fluency in applying a formula to 
solve physics problems before understanding the conceptual as-
pects the formula describes, or should they first conceptually un-
derstand the phenomenon of interest and then learn to apply a 
formula to solve problems related to that phenomenon? This is a 
crucial question for instructional design and one that remains 
open. While the analysis presented in this paper takes an impor-
tant step towards answering this question by providing novel in-
sights into how representational understanding and representa-
tional fluency interact, more research is needed to investigate 
implications and applications related to the question of how best 
to support students to develop expertise with representational 
understanding and representational fluency.  
The use of search algorithms over plausible causal path analysis 
models is a promising method to analyze the effects of instruc-
tional interventions on, because we can get insights into how an 
intervention affects problem-solving behaviors, and how these 
effects account for the advantage of one intervention over the 
other. Basing our analysis on cognitive task analysis and know-
ledge component modeling, we make use of common techniques 
in the analysis of tutor log data [23]. The results from our causal 
path analysis not only provide insights into the nature of the inte-
raction of the experimental study, but also raise new hypotheses 
that can be empirically tested in future research. Thereby, our 
findings illustrate that causal path analysis modeling is a useful 
technique to augment regular tutor log data analysis. 
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